Round 2 16:06 – 17:00

Subsession 2.1:

SBTi, CRREM and operational reduction pathways, Ramboll and the embodied carbon budget (English)

AL AVE AVE AVE AVE AVE AVE

Dutch Green Building Council

Welcome

Moderator: Laetitia Nossek | DGBC

Presentations:

Julia Wein | CRREM

Jacob Steinmann | Ramboll

Julie Emmrich | WGBC

Agenda

1	Paris Proof operational and embodied
2	Operational pathways by CRREM
3	Embodied carbon budget by Ramboll
4	Discussion

Why Paris Proof?

Climate Agreement Paris (COP21)

• We made an agreement that we would stay under the 1.5 degrees..

Energy

- 29% of the CO₂ emissions in the Netherlands come from existing buildings
- Energy labels do not always give a correct image of energy usage of a building

Materials

- 11% of the CO₂ emissions in the Netherlands come from embodied carbon
 - A conventinal MPG calculation steers not enough on the climate urgency short term

Paris Proof: energy targets

Emissions of a building over its lifecycle

Levens	Levenscyclus van een bouwwerk									Buiten de levenscyclus van het bouwwerk										
	A 1 - 3			A	4 - 5	Π			B1-7					C 1	- 4		1			
Pro	ductiefas	e		Bou	wfase			G	Sebruiksfas	e			Sic	oop-en ver	werkingsfa	ase	i	D.		
																	ł	buiten de		
A 1	A 2	Α3	A	4	A5		B1	B2	B3	B4	B5		C1	C2	С3	C4	÷.	het bouwwerk		
Winning van grondstoffen	Transport	Productie	Transport	-	Bouw- en installatieproces, aanleg		Gebruik	Onderhoud	Reparaties	Vervangingen	Hernieuwing		Sloop Transport Afvalbewerking Finale afvalverwerking					Mogelijkheden voor hergebruik, terugwinning -en recycling		
									B6								Ì			
							Operatio	oneel energ	iegebruik								i			
Paris Proof Embodied Carbon Upfront carbon emissions A1-A5							<u>Whole Life Carbon</u> All embodied and operational emissions A-C							Dutch	legislati	<u>MPG</u> on A-D e	xcı	ulding B6		

Paris Proof: Embodied carbon targets

Resulting in embodied carbon targets per m²

Embodied carbon targets new built

Embodied carbon targets renovation

Paris Proof targets	embodie	embodied carbon kg CO2-eq per m2								
	2021	2030	2040	2050						
Residential (one-family)	200	126	75	45						
Residential (multiple-family)	220	139	83	50						
Office	240	158	94	56						
Retail	260	164	98	59						
Industry	240	151	91	54						

Paris Proof targets	embodi	embodied carbon kg CO2-eq per m2								
	2021	2030	2040	2050						
Residential (one-family)	100	63	38	23						
Residential (multiple-family)	100	63	38	23						
Office	125	79	47	28						
Retail	125	79	47	28						
Industry	100	63	38	23						

With an own calculation protocol Paris Proof embodied carbon Protocol

Also known as CO2-eis MPG-2 GWPa

Next step: Common framework Scope 3 interpretation

Goal: Dutch innterpretation of Scope 3 for the built environment

Steps in process

- 1. First focus on builders
- 2. Inventory of used methods, databases, choices with expert group
- 3. Concept framework testing with market and accountant
- 4. Seeking alignment with others

CARBON RISK REAL ESTATE MONITOR

DC BC

> The CRREM-SBTi aligned decarbonisation pathways for Real Estate | 30.11.2023 Julia Wein — Foundation

The Carbon Risk Real Estate Monitor (CRREM) provides the real estate industry with **transparent**, **science-based decarbonization pathways** aligned with the Paris Climate Goals of **limiting global temperature rise to 2°C**, with ambition towards **1.5°C.** CRREM considers both **operational carbon and energy intensities**.

Page 12

Q4 2023

CRREM...

- ... evaluates and tracks operational carbon/energy
- ... differentiates performance targets based on use and location
- ... provides pathways for both carbon and energy intensity
- ... pushes for **global alignment** with other sectors / approaches / initiatives
- ... is a **whole building** approach to holistically evaluation asset decarbonization
- ... uses straightforward **intensity KPIs** (per SqFt, SqM) for tracking

GLOBAL CO2 & kWh INTENSITY PATHWAYS

CRREM | CARBON RISK REAL ESTATE MONITOR

Process for release & Underlying data

PROCESS FOR THE UPDATE OF THE CRREM DECARBONISATION PATHWAYS WITH SBTI

CRREM | CARBON RISK REAL ESTATE MONITOR

NEW UPDATE

SOME HIGHLIGHTS:

- More Data partners: for specific data. Partners include: CSR design, UKGBC, Australia GBC, etc.
- > **Year:** New baseline year 2020 (2018 previously).
- New property-type: Industrial Dist. Warehouse Cooled & Industrial Dist. Warehouse Warm.
- Further granularity on regions: Further sub regions have been included for the USA as well as Australia (due to the country area/size).
- New GHG-pathway: New CO2 & CO2"e" pathways for correct benchmarking

CRREM | CARBON RISK REAL ESTATE MONITOR

Page 15 Q4 2023

CRREM & SBTi

Risk Assessment (CRREM) vs. Target Setting (SBTi)

- The new 1.5° C aligned CRREM-SBTi pathways mean that the industry can use the same underlying emissions scenarios and projections for limiting warming to 1.5° C by 2050 for both <u>risk assessment</u> and <u>targetsetting</u> purposes.
- CRREM: transition risk assessment enables the evaluation of a property's relative risk compared to the median property
- CRREM: Guided by the logic of the market's average intensity within the CRREM pathways, not all properties will perfectly align with the benchmark in the short run; rather, some will fall below it, and some will exceed it.
- SBTi: The SBTi derives company-level science-based targets from sector emissions scenarios by applying a target-setting method called the sectoral decarbonization approach (SDA).
- SBTi: The SDA method is based on carbon intensity convergence whereby different companies in the sector are expected to converge toward an emission intensity at a certain time e.g. in 2050.

Page 16

Q4 2023

CRREM | CARBON RISK REAL ESTATE MONITOR

CRREM & DGBC

CRREM & DGBC:

- CRREM has aligned all underlying datapoints with the DGBC.
- "Whole building" approach, however excluding certain consumption like EV charging.
- Energy-intensities for property-types directly aligned with the DGBC.
- CRREM uses EU source for EF projections: FF55 Scenario & EU Ref Scenario. Please note: this could be higher/ different to national projections.

CRREM | CARBON RISK REAL ESTATE MONITOR

CRREM | CARBON RISK REAL ESTATE MONITOR

info@crrem.eu <u>WWW.CRREM.EU</u> / <u>WWW.CRREM.ORG</u>

IIÖ INSTITUTE FOR REAL ESTATE ECONOMICS

A 1.5°C PATHWAY FOR THE GLOBAL BUILDINGS SECTOR'S EMBODIED EMISSIONS

Scope 1-2-3: SBTi, CRREM and operational reduction pathways, Ramboll and the embodied carbon budget

30 November 2023

Bright ideas. Sustainable change.

Ramboll in brief

We are an independent engineering, architecture and consultancy company founded in Denmark in 1945.

Our experts create sustainable solutions across **Buildings**, **Transport**, **Water, Environment & Health, Architecture & Landscape, Energy, and Management Consulting.**

Across the world, Ramboll combines local experience with a global knowledgebase to create sustainable cities and societies. We combine insights with the power to drive positive change to our clients, in the form of ideas that can be realized and implemented.

We call it: Bright ideas. Sustainable change. , 300 global offices

18,000 employees

- Report series published in March 2022
- Together with Laudes Foundation and academic partners
- Bottom-up baseline of embodied carbon in Europe
- Top-down targets based on global carbon budget _____

Foundational work on developing embodied carbon benchmarks

https://c.ramboll.com/lets-reduce-embodied-carbon

We define a reference pathway:

- Aligned with SBTi fundamentals
- New construction
- Upfront emissions
- Absolute emissions pathway
- Intensity target
- Intensity metric CO2e/m2

Alternative options are also provided:

- Absolute emissions target (in % reduction of carbon footprint)
- Combined pathway for new construction and renovation

Our approach for the SBTi pathway

Key elements and data sources for a science-based decarbonisation pathway for upfront embodied emissions (I)

Global carbon budget and decarbonisation pathway

- IPCC AR6: GHG budget
- Median of pathways for 1.5°C with no or little overshoot ("C1")

Data on construction emissions

- Exiobase version 3.8.2
- Multi-Regional Input-Output Model that provides information on the environmental impacts of economic activities across regions and sectors

Downscaling strategy

 Identify the appropriate share of buildings' embodied emissions out of the entire global carbon budget

Downscaling approach	Allocated share for new building construction				
Grandfathering	10.2%				
Economic value added	6.6%				
Equal per capita and utilitarian	9.2%				

Source: Own calculations based on Exiobase

Key elements and data sources for a science-based decarbonisation pathway for upfront embodied emissions (II)

Bottom-up LCA data

• Informs the status quo of upfront embodied carbon levels for the different building types

Average CO ₂ eq emission	kg CO ₂ eq / m²
Residential	407.9
Offices (an assumed representative for other non-residential typologies)	572.4

Source: Röck, M. et al. (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. https://doi.org/10.1016/j.apenergy.2019.114107.

Building stock development

- Projected global floor area growth
- Corrected for renovation to account only for net new building construction
- Disaggregated for different building types (residential, offices, retail, other)

EVOLUTION OF GLOBAL FLOOR AREA (IN

Sources: IEA (2021) https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf; Deetman et al (2020). Modelling global material stocks and flows for residential and service sector buildinga towards 2050. https://doi.org/10.1016/j.jcleprc.2019.118658

Carbon intensity upfront embodied GHG emissions pathway for new buildings (SDA pathway)

emissions by 2050

All pathways and targets relate to upfront embodied carbon (A1-A5) for the entire building, including structure, floors, roof, internal and external walls, and finishes up to a CAT A fit out.

The m² relate to the gross floor area of the building.

Emission intensity targets kg CO₂eq/m²

	2025	2030	2035	2040	2045	2050
Residential	406.8	264.0	154.1	84.2	49.0	11.3
Office	598.6	410.0	247.1	129.9	70.3	14.3
Retail	638.1	414.9	239.2	121.7	64.2	12.9
Other	504.0	350.6	230.3	124.0	69.4	14.9

To be aligned with a 1.5C target, emissions reductions are needed that go much beyond the decarbonization of the production of steel and cement

 Reducing upfront embodied emissions is influenced by material sectors, which reduce more slowly up to 2030

Sector	Share of total upfront GHG emissions from	Reduction % relative to 2020 levels (SBTi absolute reduction, scope 1)						
	construction 2019	2030	2050					
Cement	28%	-19%	-94%					
Steel	17%	-24%	-91%					

 Much further reduction measures are needed, including improving design for less material use and shifting to low-carbon material alternatives from reuse, recycling or sustainable bio-based sources

Reduction pathway for absolute upfront embodied emissions with contribution from cement and steel industries

The pathways for all building construction activities including renovation is steeper than for new construction only

The pathways for all building construction activities project a steeper reduction in kg CO_2 -eq/m₂, due to the additional number of m² being included for renovation, with upfront GHG emissions per m² about 50% lower for renovation than for new construction. However, the pathway for all building construction activities allow the market to focus on renovation and increase the number of m2 that can be delivered for the same carbon budget.

New buildings only

	2025	2030	2035	2040	2045	2050
Residential	406.8	257.4	154.1	84.2	49.0	11.3
Office	598.6	385.8	247.1	129.9	70.3	14.3
Retail	638.1	390.9	239.2	121.7	64.2	12.9
Other	504.0	350.6	230.3	124.0	69.4	14.9

	2025	2030	2035	2040	2045	2050
Residential	348.0	171.6	105.5	56.5	31.2	6.5
Office	598.2	325.0	201.7	103.0	53.5	10.3
Retail	637.6	333.0	199.4	99.2	50.5	9.6
Other	478.8	265.4	169.3	88.7	47.4	9.4

The pathways do not significantly change when a different downscaling approach is applied

Independently of the downscaling approach applied, the upfront embodied emissions pathways project a steep reduction in kg CO_2 -eq/m₂, due to the projected expansion in m² being built in the future, especially in developing economies

	2025	2030	2035	2040	2045	2050		2025	2030	2035	2040	2045	2050		2025	2030	2035	2040	2045	2050
Residential	406.8	257.4	154.1	84.2	49.0	11.3	Residential	383.1	227.4	127.2	64.6	34.7	7.3	Residential	400.7	249.6	147.2	79.1	45.3	10.3
Office	598.6	385.8	247.1	129.9	70.3	14.3	Office	563.7	340.8	203.9	99.6	49.8	9.3	Office	589.6	374.2	236.0	122.1	65.0	13.0
Retail	638.1	390.9	239.2	121.7	64.2	12.9	Retail	600.9	345.4	197.4	93.3	45.5	8.4	Retail	628.5	379.1	228.4	114.3	59.4	11.8
Other	504.0	350.6	230.3	124.0	69.4	14.9	Other	474.6	309.7	190.0	95.1	49.2	9.7	Other	496.4	340.0	219.9	116.5	64.2	13.5

Ramboll

Thank you

Bright ide

IBOLL

Xavier Le Den, Market Director Strategic Sustainability Consulting (BE XALD@ramboll.com

Matteo Caspani, Senior Consultant Strategic Sustainability Consulting (BE MATCA@ramboll.com

Jacob Steinmann, Consultant Strategic Sustainability Consulting (BE JBST@ramboll.com

Bright ideas. Sustainable change.

Downscaling approaches

Attribution principles	Description	Underlying principle of distributive justice
Grandfathering	The GHG budget is allocated and spread over time based on past or current emission levels. Current high emitters also have relatively higher carbon budgets.	Acquired rights: No theoretical justification, as the share, is based on historical data on how large a share the system/country has previously acquired.
Equal per capita	All individuals in the world have an equal right to emit GHGs. The individual carbon budget is the same for all, which allows to establish national carbon budgets.	<i>Egalitarianism:</i> All individuals should be equal in terms of welfare or resources.
Economic capability	A larger share of the remaining budget is allocated to those who have fewer means, for instance by allocating a lower reduction target to a country with a low GDP. The individual carbon budget differs and favours poorer and less developed economies.	<i>Prioritarianism:</i> A benefit has a greater moral value the worse the situation of the individual to whom it accrues.
Economic value added	Determines the total gross value added from each industry sector based on total economic activity in the World. The approach considers value added it does not consider the need or utility that the industries provide to the final consumers	<i>Financial merit:</i> Industry sectors with a relatively large value added are allocated a proportionally large share of the emission budget.
Utilitarian	The carbon budget is split by assigning individual shares which are proportional to the final consumption expenditure of an economy.	<i>Utilitarianism:</i> Maximising the sum of welfare should be the priority.
Historic responsibility	Emissions since the industrial revolution have caused global warming and depleted carbon budget to the current levels. Therefore, emitters of the past should be held accountable and emit less in the future.	<i>Responsibility</i> : Historic action is the reason for the situation the world is facing today.

Downscaling approaches have different advantages and disadvantages

Grandfathering

Advantages

- Mature and widespread principle
- Commonly used because it can be substantiated with comparable and high-quality data

Disadvantages

 Prolonges historical emission patterns into the future without considerations of equity or ability to decarbonise

Equal-per-capita combined with Utilitarian

Advantages

- Avoids replicating current and historical emissions patterns
- Maximises total welfare based on final consumption expenditure

Disadvantages

- Empirical data is limited. Modelled data is needed at the global level
- Requires adaptation to be applicable to scope 3 emissions

R H

Unlocking impactful finance flows into the transition towards a sustainable built environment

30 November 2023 DEN HAAG

WORLD GREEN

BUILDING COUNCII

FOUNDING MEMBERS

H

Sustainable Finance Taskforce members

28 Green Building Councils

FOUNDING MEMBERS

Sustainable finance lens

more investments needed in energy efficiency in buildings alone

of our global net worth comes from the real estate sector, subject to substantive physical and transition risks from climate change

Insured losses from natural catastrophes have increased 250% in the last 30 years.

It is becoming increasingly difficult to ensure any building in areas prone to natural disasters, such as Florida.

We need to decresase energy intensivity of our buildings to 85-120 kWh/m2 by 2030.

Energy intensive buildings are at risk of economic obsolescence due to a changing regulatory environment and a shift in market expectations.

To unlock impactful finance flows we need

Alignment. Transparency Accountability. **Contextualisation.**

Transition risk operational pathways

WLC reporting framework

Criteria of green economic activities

Setting of corporate climate targets

Criteria for green buildings for bonds

WORLD GREEN BUILDING COUNCIL

RICS

Thank you for your attention! The conference continues on the 3rd floor

A AVE AVE AVE AVE AVE AVE AVE