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SAMENVATTING 
Gebruikersgedrag kan de energieprestatie van gebouwen aanzienlijk beïnvloeden. Dit rapport beschrijft 
modellen voor gebruikersgedrag in kantoorgebouwen die in literatuur zijn gevonden en/of al worden gebruikt 
door TNO-experts. Het rapport richt zich op twee specifieke toepassingen: 1) foutdetectie van 
klimatiseringssystemen en 2) model predictive control om de energieflexibiliteit in gebouwen te benutten 
(energievraag te verschuiven en te veranderen). Vier soorten gedrag zijn in beschouwing genomen, namelijk 
aanwezigheid, aanpassing van de thermostaatinstelling, gebruik van elektrische apparaten en het gebruik van 
zonwering. Naast het literatuuroverzicht en de beschrijving van de meest geschikte modellen voor 
gebruikersgedrag voor de twee toepassingen, is een keuze gemaakt welke modellen worden geïmplementeerd 
en geëvalueerd in het hybride model (predictive twin) van het TNO kantoorgebouw aan de Stieltjesweg in Delft. 
Een analyse van de prestatie van de geïmplementeerde modellen zal worden gepresenteerd in de tweede 
versie van dit rapport. Op basis hiervan wordt een definitieve set van modellen voor gebruikersgedrag 
geselecteerd die worden geïntegreerd in de predictive twins die worden gebruikt in WP1 en WP2 van het B4B 
project. 
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SUMMARY 
Occupant behaviour can significantly affect the energy performance of buildings. This report describes the 
occupant behaviour models in office buildings, which exist in the literature and/or are used already by TNO 
experts. The report focuses on two specific applications: 1) fault detection of HVAC equipment and 2) model 
predictive control to utilise the energy flexibility in buildings (i.e., to shift and alter the energy demand). Four 
types of behaviour, namely occupancy, thermostat setpoint adjustment, appliances use, and blind use, have 
been considered. Besides presenting a literature overview and pointing out the most suitable occupant models 
for the two applications, a subset was chosen to be implemented and evaluated in a digital twin of the TNO 
Stieltjesweg office building in Delft. Performance analysis of the implemented models will be presented in the 
second version of this report. This will lead to a selection of a final set of occupant behaviour models, which 
will be integrated into the digital twins used within WP1 and WP2 of the B4B project. 
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1 INTRODUCTION 
Occupant behavior can significantly affect the energy performance of buildings (Piselli and Pisello 2019). 
Energy-related occupant behavior is key in performance evaluation, fault diagnosis in HVAC systems and smart 
control. Generally, the occupant behavior can be divided into two categories (Mahdavi et al. 2017): adaptive 
behaviors (e.g. opening blinds, interaction with windows and thermostats, switching on the light etc.) which 
are triggered by adapting to the indoor climate to reach comfort, and nonadaptive behaviors which are not 
related to comfort (e.g. use of appliances, switch off the lights). Motivated by the importance of the occupant 
behavior, over the last decade a significant variety of quantitative models, aiming to generate accurate 
behavioral predictions have been proposed in the literature. However, only a fraction of these works have 
elaborated on quantifying the potential improvement these models can bring in energy performance 
prediction, as most models have not been implemented in energy simulation software. 
This report aims to present a selected collection of adaptive and non-adaptive occupant behavior models 
(including models existing in literature as well as models already used by TNO experts in other projects) which 
can generally be integrated in building energy simulators with a focus on two particular applications: 1) fault 
detection in HVAC equipment (WP1 of the B4B project), and 2) model predictive control in buildings to utilize 
the building flexibility, i.e. to shift or alter the energy demand (WP2 of the B4B project). Some HVAC equipment 
has a two-way interaction with the building; an air handling unit with heat recovery, for example, controls the 
indoor comfort in the building, but the heat recovery functionality depends on the extracted air from the 
building. In cases where the fault detection includes equipment subcomponents which interact with the 
building, the equipment model should be coupled to a digital twin of the building, which also include occupant 
behavior. Similarly, model predictive control relies on a building model which is able to continuously generate 
prediction over a short time horizon. This also requires accurately predicting the occupant behavior and its 
effect on the control objective. 
It should be noted that models suitable for fault detection are not necessarily suitable for building control (see 
Chapter 2). Four different behavioral aspects are considered: 1) occupancy, 2) appliances use, 3) thermostat 
setpoint adjustment and 4) operation of the blinds. The interaction with the windows is not covered in this 
report as in many modern office buildings (including the TNO living lab) the windows cannot be opened. Among 
the four behavior types, occupancy is particularly important as it drives other behaviors such as the 
temperature setpoint adjustment and blind operation and can also partially affect the appliances use. Each of 
these behaviors influence both the energy performance and indoor comfort of the building and are relevant to 
the two aims of this work. For each of the four behavior types considered, one or more of selected models are 
implemented and tested in a digital twin of the TNO Stieltjesweg office building in Delft that is used as living 
lab in WP1 and WP2 of the B4B project. This leads to the identification of the occupant behavior models which 
will be integrated in the above-mentioned digital twin. 
In summary, this report addresses two research questions: 1) Based on literature and previous TNO projects, 
what are common modelling approaches which can be generally applied in office buildings, for each of the 
mentioned applications and behavioral aspects, and 2) what are the most feasible models for us to use in the 
living lab TNO Stieltjesweg in Delft for fault detection and model predictive control in buildings. Here the 
selection is made based on factors such as availability of data, the spatial resolution of the building model, 
and the application in question. The general methodology of this study is described in chapter 2, followed by 
four chapters each dedicated to one of the four behavior types mentioned above. The report closes with a 
discussion and conclusion.  
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2 METHODOLOGY 
To decide which occupant models to use in fault detection and control applications in the living lab TNO 
Stieltjesweg, we used the following stepwise methodology for each of the four occupant behavior types, namely 
occupancy, appliances use, thermostat setpoint adjustment and operation of the blinds: 
- A literature review of various data-driven models is provided. The goal in this section is to cover a wide 

range of various approaches and describe their characteristics, predictive potential and data require-
ments. 

- A subset of the reviewed models and models already used by TNO experts in previous projects are selected 
and described in more detail. The models are selected based on their potential to be coupled with a build-
ing energy simulator in a straightforward way, and to be generally applicable in digital twins of office build-
ings for fault detection in HVAC systems or model predictive control. We note that a predictive model suit-
able for fault detection is not necessarily suitable for model predictive control: the former includes moni-
toring the HVAC systems by reproducing their operation in retrospect (i.e., in the near past) at regular 
timesteps. In contrast, in the latter case, the models have to be able to predict the future. Other selection 
criteria include high predictive power, having a rather general scope to be applicable to different office 
buildings, and that the training data can be acquired easily. 

- One or more of the models selected in step 2 will be implemented in a digital twin of the TNO Stieltjesweg 
office building that is used as living lab in WP1 and WP2 of the B4B project. The rationale behind the 
choice is discussed, mainly motivated by the available data and the spatial resolution (i.e., the zoning) of 
the building model and the application at hand.  

- Finally, the prediction outcomes of the implemented occupant behavior models are discussed, compared 
and, when possible, validated against the measured data in the TNO Stieltjesweg office building. This leads 
to final choices for occupant models to be used in fault detection and control applications in the living lab 
Stieltjesweg within WP1 and WP2 of the B4B project. This final step is not yet described in the first version 
of this report, but will be completed in the final version. This will also produce insights on steps to follow 
for implementing the occupant behavioral models in other office buildings. 
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3 MODELS FOR OCCUPANCY 
3.1 Literature review 
The reviewed papers on occupancy modelling can be generally divided into two categories (Ding et al. 2022), 
(Chen, Jiang, and Xie 2018) (Jin et al. 2021): 1) real-time estimation and 2) prediction.  

3.1.1 Real-time estimation 
In real-time estimation the model uses other measurable quantities (e.g., CO2 concentration) to estimate the 
occupancy. This will pose a challenge for applying such models to predict the future, as the input parameters 
of the models should also be predicted. Moreover, occupancy changes the CO2 concentration; not the other 
way around. In such cases it would be impossible to use such prediction models, but they can be considered 
as soft sensors to detect the occupancy in real time. A wide range of various modelling techniques has been 
used for real-time estimation, including hidden Markov chains (Han, Gao, and Fan 2012), (Dong et al. 2010), 
(Ai, Fan, and Gao 2014), autoregressive hidden Markov chains (Ai, Fan, and Gao 2014), (Dong et al. 2010), 
and machine learning models (e.g., support vector machines (Dong et al. 2010), (Han, Gao, and Fan 2012), 
(Chen and Soh 2017), neural networks of various architectures (Dong et al. 2010), (Javed et al. 2017), 
(Milenkovic and Amft 2013), (W. Wang et al. 2018), (Yang et al. 2012), (Yang et al. 2012) (Zhang and 
Ardakanian 2019), (Chen and Soh 2017), regression and classification trees (Fajilla et al. 2021) and 
autoregressive integrated moving average (Chen and Soh 2017), (W. Wang, Chen, and Song 2017)). The CO2 
concentration has been frequently used for real-time occupancy estimation, sometimes in combination with 
other sensor data. Data about appliance usage has also been used to infer occupancy patterns in office 
buildings (Sonta, Simmons, and Jain 2017). A fusion framework to apply machine learning models for 
occupancy estimation is presented in (Chen, Masood, and Soh 2016), which covers extreme learning machine 
(ELM), support vector machine (SVM), artificial neural network (ANN), K-nearest neighbours (KNN), linear 
discriminant analysis (LDA) and classification and regression trees (CART). 

3.1.2 Prediction 
The occupancy models suitable for prediction generally use historical occupancy data to predict future 
occupancy patterns. Therefore, after training the model on historical data, the model can predict the 
occupancy without requiring any external input except time-related parameters (e.g., hour of the day, day of 
the week, etc.). The predictive models fall into two general categories: deterministic models, or stochastic 
models. Deterministic models are in fact static profiles based on the hour of the day and day of the week 
(Duarte, Van Den Wymelenberg, and Rieger 2013), (D. Aerts, J. Minnen, I. Glorieux 2012). They are easy to 
use, but fail to capture the randomness associated with the movements of single occupants. They are suitable 
to model the occupancy of buildings with large numbers of occupants. 
On the other hand, the stochastic models can represent the random nature of occupancy behavior. The 
majority of stochastic models reviewed in this report are connected to inhomogeneous Markov chains, and 
represent the stochastic change in the occupancy of one or multiple zone(s), based on transition probabilities, 
which determine the probability of moving between well-defined states (e.g., moving from one zone to another, 
or entering/exiting a zone), and in general depend on time (e.g., hour of the day and/or day of the week). 
Training of the Markov chains involves estimating the transition probability matrices using historical occupancy 
data. The reviewed stochastic models mainly differ in their scope/number of states (e.g., single zone vs. 
multiple zones, single occupant vs. a population of occupants) and the type of the training data (e.g., measured 
data vs. surveys). A well-known example is the two-state model by (Jessen Page 2007) which models the 
absence/presence of an occupant, and can be parametrized by an hourly occupancy profile and a free 
constant parameter, referred to as the mobility, to characterize the “level of activity” of the occupants. The 
occupancy of the building at each time can be calculated by multiplying the expected total number of 
occupants by the probability of being at the present state. This model has been evaluated in (Mahdavi and 
Tahmasebi 2015), along with a deterministic model introduced in the same work, and another stochastic 
model by (Reinhart 2001). The model by (J. Page et al. 2008) has also been generalized by (Widén, Nilsson, 
and Wäckelgård 2009) to a three-state model (absent, active, inactive) and was used to model light use, and 
also to a four-state (present/absent, active/inactive) model by (McKenna, Krawczynski, and Thomson 2015). 
(Chen, Xu, and Soh 2015) redefined the Markov chain state as being the number of occupants in a zone, 
thereby proposed a multizone stochastic model which takes into account the movement of occupants between 
individual offices. 
On the other hand, (Salimi, Liu, and Hammad 2019) and (Salimi and Hammad 2020) used data on individual 
office occupants to construct occupant-specific inhomogeneous Markov chains (i.e., one Markov chain model 
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per occupant) based on the time of the day and the day of the week. (C. Wang, Yan, and Jiang 2011) have 
proposed an event-driven Markov chain model. In this case the occupancy change is not driven by time, but 
by occurrence of a specific event. Although this could constitute a more precise model in principle, it has the 
drawback that the events need to be known/determined beforehand. 
A novel approach to predict the occupancy number in offices based on an “adaptive” inhomogeneous Markov 
model has been proposed by (Li and Dong 2018), where at any time point the historical data of the recent 
past, falling inside a moving window, is used to train the model continuously. They compared this model with 
another original model based on hierarchal sampling, as well as the Page et al. (2008) model and two machine 
learning models developed in the same paper, and showed that the Markov chain model outperforms them 
all. 
Aside from Markov chain models, the deep-forest machine learning approach proposed by (Zhou et al. 2022) 
applies to short-term prediction, as the input to the model is exclusively constructed from the historical 
occupancy data, including the multi-order transition probability vectors. 

3.2 Potential options for modelling 

3.2.1 Models for fault detection 
If the occupancy is directly measured, it can directly be used in the fault detection application. Otherwise 
measured indoor environmental data (e.g., CO2 concentration) can be used as occupancy estimators. Here 
supervised (e.g., artificial neural networks (Dong et al. 2010)) or unsupervised (e.g., hidden Markov chain 
(Han, Gao, and Fan 2012)) machine learning models can be used. It should be noted that these models require 
fine-grained historical training data (e.g., data on single-room level) measuring the occupancy estimators (and 
also the occupancy itself, if a supervised model is used). Similarly at the estimation phase the occupancy 
estimators should be continuously monitored as they are used as model input. Provided that such data is 
available, these models generate accurate estimations for occupancy at the single-room level.  

3.2.2 Models for building control 
If the goal of occupancy modelling is to predict the future occupancy state to be used in e.g., model predictive 
control, models which use the indoor environmental data as input are generally not applicable (see Section 
3.1). Consequently, occupancy predictive models are trained exclusively on historical occupancy data, and 
depend only on temporal variables (e.g., hour of the day, day of the week, etc.). The simplest models in this 
category are the deterministic profile methods. To capture the temporal variation of the occupancy to a 
sufficient degree, the profiles should be (at least) based on the hour of the day and the day of the week, and 
preferably take into account the holiday periods. Markov chain models present an alternative category of 
methods for occupancy prediction. Among these, the classical model by (J. Page et al. 2008) is particularly 
straightforward to be integrated in a building simulation software as it requires the least amount of training 
data. If historical time-series of individual occupant states is available, the model proposed in (Li and Dong 
2017) would also be an attractive choice due to its adaptive nature. The model by (Chen, Xu, and Soh 2015) 
is designed for a multizone building model and has the advantage of capturing the occupants’ movement from 
one zone to another. This is achieved by using the change of occupancy as the Markov chain state, instead of 
actual number of occupants, to reduce the training computational load. It should be noted, however, that 
applying this method requires historical timeseries with high temporal resolution (e.g., less than ~ 10 minutes), 
as the model only considers changes of -/+1 in the occupancy of each office. 
It should be noted that occupancy drives other behavior such as the temperature setpoint adjustment and 
blind operation and can also partially affect the appliances’ use. Therefore the selected modelling approaches 
for appliances use, blind use or thermostat setpoint have implications for the resolution and accuracy of the 
chosen occupancy model. This depends significantly on the spatial resolution of the building model: If the 
building is modeled at the level of small offices with low number of occupants, and an accurate prediction of 
the thermostat setpoint adjustments, blind operation and/or occupant-related appliances use is required at 
the same level. The occupancy model should in principle be able to accurately predict the behavior of individual 
office occupants, and to capture the stochastic nature of single-office occupancy. On the other hand, if the 
model contains large zones with typically high number of occupants, the coupling between the occupancy 
behavior (at the level of the individual occupants) and other types of behavior becomes weaker. In this case a 
simpler occupancy model which predicts the total number of occupants in each zone, such as a deterministic 
profile method, might be sufficiently accurate. 
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It should be noted that unsupervised occupancy estimation models, such as hidden Markov chains, can also 
be used to provide training data for occupancy prediction models if the occupancy cannot be directly 
estimated. 

3.3 Selected modelling approaches for application TNO Stieltjesweg 
In the TNO Stieltjesweg building no data on behavior of individual occupants is available. Furthermore, no 
direct data on occupancy of single offices is available (although in a limited number of the offices the 
occupancy can be estimated based on the measurement of indoor CO2 concentration). The direct estimation 
of the occupancy data is possible on the floor level, by collecting and processing the gate data (using people 
counters). This leads to historical timeseries of the number of occupants per floor. The building model has a 
comparable spatial resolution: the basement (i.e., the labs) is considered to be one zone, and the other 3 
floors are divided into two zones along the north-south direction, leading to in total 7 zones. Therefore, during 
the monitoring period, the number of occupants in each zone and at each moment in time can be estimated 
by distributing the occupancy of each floor between the zones based on the zone’s floor surface area. 

3.3.1 Models for fault detection 
If the occupancy is monitored in real-time, the historical occupancy (rather than the model prediction) can be 
used for fault detection. Otherwise the model used for building control, as will be selected after testing and 
validation in Section 3.4, will be used also for fault detection. 

3.3.2 Models for building control 
Based on the measured occupancy data, deterministic and probabilistic models will be constructed:  
- In its simplest form, the deterministic model is based on average occupancy profiles which are calculated 

from the historical measured occupancy data, and represent the average number of occupants per zone 
in 5-minute intervals during the day, separately for each day of the week. This model will act as a reference 
model with which other models can be compared. More elaborated approaches can also be considered, 
where the profile is dynamically adapted based on the near-past historical occupancy data. For example, 
the occupancy profile of the current week is assumed to be the average of the profile in the past 2 or 3 
weeks (as calculated from the measured data in that period). Moving to an adaptive profile method would 
be justified if the simple model based on a fixed profile performs poorly. 

- The probabilistic model is an extension of the two-state Markov chain model by (J. Page et al. 2008), which 
predicts the number of occupants in all zones simultaneously, and also makes a distinction between the 
days of the week. The advantage of using the model by (J. Page et al. 2008) is that it is a direct generali-
zation of a static profile: the occupancy profiles that are calculated for the deterministic model are used 
directly as model input. Given that each zone hosts a large number of occupants, the alternative would be 
a multi-state Markov chain model, which requires a larger amount of training data and is computationally 
more expensive to apply. Therefore the model by (J. Page et al. 2008) is chosen as the first stochastic 
model for implementation and validation. In case the performance of the model turns out to be unsatis-
factory, alternative models can be considered. 

3.4 Results application TNO Stieltjesweg 
To validate and compare the models, they are incorporated in the hybrid building model developed by TNO1 
and the resulting energy demands are compared with a reference simulation which uses the actual measured 
occupancy timeseries as input. 
This section will be completed in the final version of this report. 

 
1 The hybrid building model developed by TNO is described in deliverable D2.1-2.2-2.3 “Building and building systems energy 
prediction models to enhance energy flexibility control” of the B4B project. 



 

www.brainsforbuildings.org      10/20 

4 THERMOSTAT SETPOINT ADJUSTMENT 
4.1 Literature review 
The reviewed papers on predicting temperature setpoint adjustments by occupants can be generally divided 
into two categories: 1) statistical models and 2) reinforcement learning and agent-based models. 

4.1.1 Statistical models 
A common approach in occupant behavior modelling is to model binary action probabilities (e.g., 
opening/closing the windows or blinds) by logistic regression, where the influence of various (environmental) 
triggers are linearly combined. Such models have been applied in the literature to predict the action of 
changing the thermostat settings from one timestep to the next (Gunay et al. 2018). Using monitoring data 
from 11 residential buildings, (Belazi et al. 2019) constructed logistic regression models for three levels of 
activity: active, normal and passive. The triggers considered in this study include indoor and outdoor 
temperatures, indoor and outdoor relative humidity, outdoor CO2, wind speed and solar radiation. This method 
has been generalized by (Fabi, Andersen, and Corgnati 2013) and (Fabi et al. 2013): in addition to predicting 
the probability of changing the thermostat settings by logistic regression, a linear regression model was trained 
to predict the magnitude of change. Also in this work, three separate models are developed corresponding to 
three activity levels. Following the same principles, Field (D’Oca et al. 2014) modelled two action probabilities 
for turning up and turning down the thermostat for three activity levels. Notably, in this work the period of the 
day is included in the model inputs and environmental triggers. 

4.1.2 Reinforcement learning and agent-based models 
Agent-based models (rule-based agents as well as reinforcement learning agents) have also been used to 
mimic occupants’ interaction with the thermostat. For example, (Vellei, Martinez, and Le Dréau 2021) 
constructed and trained rule-based stochastic agents, using a novel dynamic thermal discomfort estimation 
which is based on a two-node thermophysiological model coupled with a dynamic thermal perception which is 
used to calculate thermal comfort. The inputs of thermophysiological model are the six basic parameters: air 
temperature, mean radiant temperature, air velocity, relative humidity, clothing insulation, and metabolic heat 
generated by human activity. User interaction data from about 9,000 connected Canadian thermostats was 
used to calibrate the model. The model was then used to predict occupants’ override rates in reaction to typical 
demand-response-activated setpoint modulations in two residential buildings.  
On the other hand, (Deng and Chen 2021) used reinforcement learning agents. The agents are trained using 
the Q-learning algorithm, where the change in thermal sensation vote (TSV)2 is used as the reward function. 
After training, the model predicted the behavior of adjusting the thermostat set point with a R2 from 0.75 to 
0.8. in an office building. Most notably, it has been demonstrated that the trained reinforcement-learning (RL) 
agent has self-adaptation capability: transferring the behavior knowledge of the RL model to other office 
buildings with different HVAC control systems, the model predicted the occupant behavior with a R2 from 0.73 
to 0.8. Going from office buildings to residential buildings, the transfer learning model also had an R2 over 0.6. 
Following the same principles, (Park and Nagy 2020) presented a reinforcement learning-based Occupant-
Centric Controller for thermostats. Monitoring indoor air temperature, occupancy, and thermal vote, the agent 
learns the unique occupant behavior and indoor environments and calculates adaptive thermostat set-points 
to balance between occupant comfort and energy efficiency. 

4.2 Potential options for modelling 

4.2.1 Models for fault detection 
Usually, temperature setpoints in offices are continuously monitored. In this case the measured data can be 
used directly in fault detection. Otherwise, a model is required to predict the behavior. Here agent-based 
models have the advantage that they explicitly model the occupants as active agents that perceive and react 
to the changes in their environment. For example, the self-learning agent developed by (Deng and Chen 2021) 
can be an attractive choice due to its generalizability potential. However training and implementing these 
models requires estimating a comfort KPI which is typically related to a wide range of (indoor) environmental 
factors. Therefore application of these models to fault detection is heavily dependent on the availability of their 
required input data. If the required data is not completely available, statistical models present an alternative, 

 
2 The calculation method for TSV is not presented in this paper. 
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as they don’t necessitate calculating a comfort KPI and thus are more flexible regarding their required input 
data. The input for statistical models can be limited to known or measured factors (e.g., the outdoor weather 
and the hour of the day). Switching to a different type of model and limiting/changing model input parameters 
will of course have consequences for the accuracy of the model. To our knowledge the two modelling 
approaches have not yet been compared in the literature in terms of their prediction accuracy. 
The basic principle behind both the agent-based and the statistical models is that occupants react to the 
environment to improve their comfort. While this certainly holds in general, and might explain the behavior of 
an active occupant quite well, occupants’ habits can also play an important role. In previous research at TNO 
it turns out that, especially for passive occupants, simply by looking at the trend in the near past, it is possible 
to already get quite a high prediction accuracy. Applying this approach to more than 20 Dutch households 
yields a ~%98 accuracy while applying the statistical approach proposed by (Fabi et al. 2013; Fabi, Andersen, 
and Corgnati 2013) on the same dataset, without considering occupants’ habits, resulted in a less accurate 
prediction. It is therefore recommended to include the time-related features (e.g., hour of the day) as input in 
statistical models. 

4.2.2 Models for building control 
The considerations pointed out in Section 4.2.1 concerning thermostat setpoint prediction for fault detection 
also holds for building control. In the case of agent-based models there is an additional complexity, as the 
environmental factors needed to calculate the comfort KPIs should be predicted over a time horizon. This 
might make it practically challenging to use agent-based models for building control.  
If limited training data is available, a possible approach would be to train a statistical model, including the 
time-related features in model input, as suggested in Section 4.2.1. If the setpoints are continuously 
monitored, we propose to construct a predictive model based on the near-past monitoring data3. The model 
could be as simple as predicting the current value of the setpoint to be the same as what it was yesterday at 
the same hour. As mentioned in Section 4.2.1. such a simple model can already yield quite a high accuracy 
especially for inactive occupants. If a higher accuracy is needed a standard model for timeseries prediction, 
such as autoregressive integrated moving average or a LSTM network, can be used. These models can also 
take into account additional inputs, such as occupancy, day of the week and indoor/outdoor temperature. 

4.3 Selected modelling approaches for application TNO Stieltjesweg 

4.3.1 Models for fault detection 
In the Stieltjesweg building, the setpoint temperatures in the offices are continuously monitored. Therefore, in 
the fault detection application, the measured setpoints are directly used as an input for the digital twin of the 
Stieltjesweg building. 

4.3.2 Models for building control 
Upon inspection, temperature setpoint data seems to be rather static (the timeseries vary ~ once a month). It 
would therefore be logical to use a simple model to predict the future setpoints, by assuming that the value of 
the setpoint for the coming hour is the same as what it was at the same hour yesterday. 

4.4 Results application TNO Stieltjesweg 
Two simulations can be performed to validate the approach, one based on the assumed setpoint values and 
the other based on the actual measured setpoint values (in historical data). The difference between the two 
simulations in the energy demand would quantify the error resulting from the simple model. If the error is too 
large, other modelling approaches as suggested in Section 4.2.2 can be considered. This section will be 
completed in the final version of this report. 
 

 
3 The amount of the historical data to include in the model input is a design choice. It can include only the previous day, or it can 
cover a couple of weeks. The amount of the historical data can be determined via hyperparameter optimization, a common 
technique in machine learning, to reach the best prediction accuracy. 
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5 APPLIANCES USE 
5.1 Literature review 
The literature review reveals that the primary input to predict electricity use of appliances is the historical 
electricity use data. In most cases the models also take occupancy (either directly estimated or predicted by 
another model) as input, as the use of some appliances (e.g., laptops and screens) are proportional to the 
number of office occupants. The models can be generally divided into two categories: 1) statistical models and 
2) machine learning models. 

5.1.1 Statistical models 
A common approach in the literature is to model the probability distribution of the electric power usage, 
dependent on time of the day or the occupancy. Then, a data point is randomly sampled from the probability 
distribution to predict the electricity. An example of this approach is presented by (Gunay et al. 2016). In this 
work, five different situations related to occupancies were considered: (a) office occupied, (b) intermediate 
breaks, (c) weekday evenings, (d) weekends, and (e) vacations. In each case, the empirical probability 
distribution for the electric power usage is constructed from the historical data corresponding to the same 
period. To predict the future electricity use, first the occupancy is predicted to identify the relevant time period, 
then a datapoint is randomly drawn from the corresponding distribution. It has been shown that this approach 
preserves the statistical properties of the historical data in the generated predictions. A similar approach has 
been used by (Mahdavi, Tahmasebi, and Kayalar 2016), where a Weibull distribution is fitted to the histogram 
of the electricity power use. Also in this work, the power use is coupled to occupancy: three different occupancy 
regimes have been considered: 1) occupied periods or intermediate absences shorter than one hour; 2) 
intermediate absences longer than one hour; 3) outside working hours. For each regime a Weibull distribution 
is separately fitted to the historical data. In parallel, a deterministic model for appliances use has been 
constructed in the same work, which assumes that the electric power is linearly proportional to the occupancy. 
Regarding the occupancy input, (Mahdavi, Tahmasebi, and Kayalar 2016) considered and compared three 
different cases: direct estimation, and occupancy prediction by a model (J. Page et al. 2008) with two different 
values for the mobility factor. It was concluded that the deterministic model is better at predicting the total 
annual load, while the stochastic model is better at predicting the annual peak load. The performance of both 
models has been evaluated in this work: using the measured occupancy, the deterministic and stochastic 
model both resulted in a normalized root mean squared error (NRMSE) of about 13%. For the stochastic model, 
using predicted occupancy increase the NRMSE to ~16%. It should be noted that these numbers should be 
considered with caution, as they are likely to be situation dependent: in another study with a different use case 
a NRMSE as high as 30% has been reported for the stochastic models, although this could be partially due to 
the fact that the model is not fully recalibrated to the new use case.   
In (Obrien, Abdelalim, and Gunay 2019) a rather different statistical approach was presented: the hourly 
schedule of the power use is assumed to have the same general shape every day: starting at a constant low 
level at midnight, the power use profile linearly increases to a higher level during a limited period (in the 
morning), then stays unchanged for some time, until it is linearly decreased during a limited period (in the 
evening) to a lower level. The profile can thus be expressed as a six-parameter five-section linear piecewise 
equation (two values for the two levels plus four time values). The parameters for the power use profile are 
different for any given day, and are sampled from a multi-variable Gaussian distribution. In this way 
stochasticity is introduced to the model. The Gaussian distribution's mean and variance are estimated from 
historical data. A mixed-effect modelling approach is exploited here, capturing not only the total power use in 
the building, but also the variations in the electricity use of individual occupants. This model is applied to a 17-
storey office tower for right-sizing HVAC equipment. 

5.1.2 Machine learning models 
Machine leaning models have also been used to predict the appliances electricity use. This includes long short-
term memory (LSTM) neural networks (Markovic et al. 2021) (Z. Wang, Hong, and Piette 2019), Locally 
Weighted Learning (LWL), Support Vector Machine (SVM), and C4.5 decision tree algorithms (Lasternas et al. 
2014). In particular (Markovic et al. 2021) developed a LSTM model using monitored data from a research 
building located in Abu Dhabi, United Arab Emirates (UAE). In order to test the generalization capabilities of 
the proposed method, the model was evaluated using data from two additional buildings, a bank office building 
located in Frankfurt, Germany, and a university building in Ottawa, Canada. The results showed that the 
developed LSTM is applicable to the tested buildings without the need for occupant-wise or building-wise 
calibration. The model predicts the appliances electricity use over the following 24 h, based on the measured 
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data over the past days. The duration of the input sequence was treated as a learned hyperparameter based 
on the experimental results. Here, the investigated input sequence ranged between 1 and 7 days. Taking the 
occupancy as an additional model input turned out to improve model predictions, although in 2 out of 3 use 
cases the improvement is minor (less than 1% reduction in NRSME). It was shown that the model outperforms 
the models by (Gunay et al. 2016) and (Mahdavi, Tahmasebi, and Kayalar 2016), although the difference 
between the models depends on the use case: among the 3 use cases, the difference between the NRMSE 
values of the LSTM model and the recalibrated version of (Gunay et al. 2016) model ranges from 1 to 10%. 

5.2 Potential options for modelling 

5.2.1 Models for fault detection 
If the electric power use of appliances is continuously monitored, this data can be directly used in fault 
detection. Otherwise any of the predictive models used for building control can also be used for fault detection. 

5.2.2 Models for building control 
Literature review revealed two important categories of models: 1) statistical methods, and 2) machine-learning 
approaches. The advantage of models in category 1) is that in principle they are able to reproduce the 
statistical characteristics of the distribution of the electric power usage. This includes capturing the occasional 
spikes which typically show up in the power use signal, and whose occurrence appears to be random (i.e., is 
hard to predict). However, these models do not capture the temporal correlations between the datapoints. On 
the other hand, the models in category 2) have the ability to incorporate the temporal correlations along the 
electricity power signal, while they might result in predictions which are smoother than what is in reality. Among 
the reviewed papers, the work by (Gunay et al. 2016) is a representative for the models in category 1), while 
the LSTM model proposed by (Markovic et al. 2021) represents category 2). Both of these models are good 
candidates to be applied in office buildings. It should be noted however, that in general predicting the 
appliances electricity use, especially that of a single house or a single office, is challenging. In such a situation 
it is not a priori clear which of the two above-mentioned models is more accurate in any particular use case, 
and to what extent they differ from each other in terms of their influence on the building performance 
prediction. Therefore, in a first attempt to predict the appliances use, it is meaningful to consider a rather 
simple model to act as a baseline. The baseline model could be a fixed profile for each hour of the day and 
the day of the week, which is also linked to occupancy similar to the deterministic model in (Mahdavi, 
Tahmasebi, and Kayalar 2016). This approach is applied in the TNO Stieltjesweg building (see Section 5.3.2 
for details). A more advanced option is to make the profile adaptive, by constructing it using only the “recent” 
historical data which falls inside a moving window (e.g., to predict the appliance use at a particular hour of a 
certain day, the historical data for the past 4 weeks is collected, and then the datapoints corresponding to the 
same hour and weekday is averaged). Characterizing the performance of the baseline model, one can then 
consider more complex models. Using a more advanced model is only justified if it significantly outperforms 
the baseline. 

5.3 Selected modelling approaches for application TNO Stieltjesweg 

5.3.1 Models for fault detection 
In the TNO Stieltjesweg office building electric appliances are not continuously monitored, but measurement 
data in a limited time period is available for certain appliances such as laptops and computer screens, lamps, 
coffee machines, vending machines, etc. As continuous monitoring of all appliances is not present, the 
appliance use should be modelled in the same way in the case of fault detection as in the case of building 
control. It is therefore proposed that the same model is applied in both cases. The suggested model is thus 
described in Section 5.3.2. 

5.3.2 Models for building control 
The proposed model follows the same basic principle of the deterministic model by (Mahdavi, Tahmasebi, and 
Kayalar 2016). At the first step, the limited measured data is used to construct profiles of electric power use, 
per hour of the day and per day of the week, for each monitored component. Then the profiles are combined 
with proper proportionality factors (e.g., the typical power use of a laptop is multiplied by the number of 
occupants in each zone, the power use of a lamp is multiplied by the number of lamps in each zone) to yield 
the full profile for appliance electricity use per zone.  
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5.4 Results application TNO Stieltjesweg 
This section will be completed in the final version of this report. 
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6 BLINDS 
6.1 Literature review 
Visual comfort of the occupant, as quantified by indoor illuminance, luminance, glair indices and solar 
radiation/ external illuminance, are considered as a principal trigger for closing the manual blinds. This is 
established in an overview by (Da Silva, Leal, and Andersen 2012). This review reveals that the action 
thresholds for closing the blinds vary in different studies. In addition, it turns out that generally there are not 
much literature available on manually controllable blinds, and most of the previous works have focused only 
on blind closing and not on blind opening. In particular two studies were found in the literature which use 
logistic regression to model the probability of both actions, where the trigger factors for taking an action are 
linearly combined. The study by (Gunay et al. 2017) mainly focuses on proposing and testing a control scheme 
for opening the blinds and turning off the light (closing the blinds and turning the lamps on remains to be done 
manually). This is done by constructing statistical models for closing the blinds and turning the lamps on, to 
find out setpoints for indoor illuminance to safely (i.e., without violating occupant’s comfort) close the shading 
and turn the lamps off. This has been done separately for individual offices. As a byproduct of this work, the 
statistical correlations between the outdoor solar radiation and the blind opening and closing actions have 
been quantified. These can be used for modelling the manual shading behavior. An important modelling point 
is that interaction with the blind occurs only when the office is occupied (this is taken into account both during 
the training and application of the model). This can reproduce the observation that once the blinds are closed, 
they can stay closed for days before they are opened again (see Figure 5 in (Gunay et al. 2017)). The second 
study by (Haldi and Robinson 2009) uses a similar technique to model occupants’ interaction with two types 
of manually controllable blinds in 14 south-facing individual offices in an office building. Three separate 
models were constructed depending on the occupancy status: arrival, intermediate occupancy and departure. 
The contribution of various environmental triggers was tested, namely indoor and outdoor temperature, indoor 
and outdoor illuminance, global horizontal radiation, beam and diffuse radiation, whether the lighting is on 
(binary variable) and the current position of the blinds. Forward feature selection was used to choose the most 
influential triggers to be included in the final model. The dominant triggers found are dependent on the type 
of blinds, type of action, and the occupancy regime. Nevertheless the current position of the blinds and the 
indoor illuminance always rank on top. Based on the constructed logistic regression models, (Haldi and 
Robinson 2009) also implemented a Monte Carlo algorithm to simulate the blind usage. They showed that the 
model is generally able to capture the statistical properties of the actual behavior, although occasional 
deviations were also observed. 

6.2 Potential options for modelling 

6.2.1 Models for fault detection 
Similarly to the other three behavior types, if the manual interaction with the blinds is continuously monitored, 
the data can be directly used for fault detection. However this is rarely the case. Usually a model should be 
used to predict the behavior. There are two options: 
1. If a historical dataset is available, logistic regression models for blinds closing and opening can be 

constructed in the same way proposed by (Haldi and Robinson 2009). The trigger factors included in the 
model should be either monitored or predicted in some way, so that the model can be applied in practice. 
The data should include some information about the shading, e.g., preferred (i.e., most probable) positions 
of the blinds when the closing/opening actions occur. 

2. If there is no data on blinds usage, its influence on solar shading has to be indirectly estimated. This can 
be done by matching the predictions of a digital twin of the building, e.g., of indoor temperature and/or 
energy use, with actual data. 

6.2.2 Models for building control 
The two modelling options for fault detection, as presented in Section 6.2.1, are also applicable to building 
control. In case option 2 is chosen, the model input should be limited to the ones that can be predicted, such 
as outdoor solar radiation.  
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6.3 Selected modelling approaches for application TNO Stieltjesweg 

6.3.1 Models for fault detection 
In the Stieltjesweg building, there are two possibilities for shading control: automatic shading devices located 
outside the windows, and shading devices in the inside of the windows manually controlled by the occupants. 
Furthermore, there is considerable external shading from surrounding buildings. As there is no data on the 
operation of internal shading devices, their resulting shading factor should be indirectly estimated following 
option 2 in Section 6.2.1. The shading from surrounding buildings (calculated by a data-driven software 
developed at TNO) as well as from the automatic external shading devices (modeled by a simple controller 
which reacts to outdoor radiation) is taken into account in the hybrid model of the Stieltjesweg building4. Then 
the shading factor associated with the manual shading devices is estimated as part of the model calibration. 
This can be done by assuming that the closing and opening actions are triggered by outdoor radiation, as 
determined by two radiation thresholds (a higher threshold for closing the blinds and a lower one for opening 
them). The interaction with the blinds is also coupled with occupancy (i.e., there will be no interaction with the 
blinds in a certain zone if the zone is not occupied). The radiation thresholds are then determined e.g., by 
matching the predicted zone temperatures with the measured data. This approach is in fact similar to the 
statistical model by (Gunay et al. 2017): because each zone in the building model covers roughly half a floor 
and contains many offices, it is expected that the stochasticity in the interactions of individual occupants with 
the blinds are averaged out to some extent. Therefore, using two deterministic thresholds instead of a 
statistical model can be sufficiently accurate. 
It should be noted that, since the automatic shading also reacts to the outdoor radiation, it might be difficult 
in practice to separate the contribution of manual shading from the automatic shading, especially because 
the manual shading might be less effective: the manual blinds are inside the building, so from an energetic 
point of view their effectiveness depends on their ability of reflecting the sunlight which has already entered 
the building. Based on the above considerations, the final choice for the modelling approach will be presented 
in the second version of this report, when testing and validation of the models (Section 6.4) is completed. It 
can very well be that the manual and automatic shadings are effectively combined into a single model. 

6.3.2 Models for building control 
The model used for fault detection, as described in Section 6.3.1, will also be used for building control. 

6.4 Results application TNO Stieltjesweg 
This section will be completed in the final version of this report. 
 

 
4 The hybrid building model developed by TNO is described in deliverable D2.1-2.2-2.3 “Building and building systems energy 
prediction models to enhance energy flexibility control” of the B4B project. 
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7 CONCLUSION 
This report describes the occupant behavior models, which exist in the literature and/or are used already by 
TNO experts, that are potentially applicable to fault detection of HVAC equipment and model predictive control 
in office buildings. Four types of behavior, namely occupancy, thermostat setpoint adjustment, appliances use 
and blinds use have been considered. Besides presenting a literature overview and pointing out the most 
suitable occupant models for fault detection and predictive control, a subset of the models were chosen to be 
implemented, and evaluated, in a digital twin of the living lab TNO Stieltjesweg in Delft. Performance analysis 
of the implemented models will be presented in the second version of this report, leading to a selection of a 
final set of occupant models which will be integrated in the digital twin used within WP1 and WP2 of the B4B 
project. A summary of the insights derived from the literature review, as well as an overview of the potential 
models chosen for implementation, is given below. 
For occupancy modelling, two general categories are identified: occupancy detection, which relates the 
occupancy to environmental factors such as CO2, usually using machine learning techniques, and occupancy 
prediction using profiles or Markov chain models. It was proposed that historical occupancy data measured at 
TNO Stieltjesweg is used to construct both occupancy profiles as well as a generalized version of the Markov 
chain model by (J. Page et al. 2008). The two models will be compared and validated against measured data. 
Both models can be applied for building control. For fault detection measured historical data will be directly 
used. 
Models for the temperature setpoint adjustment include statistical models based on logistic regression as well 
as the agent-based models. The former can be more easily implemented for building control. Emphasizing on 
the importance of taking into account occupants’ habits and routines in the model, it has been proposed that 
models for timeseries predictions, which predict the future trend based on the near-past history might perform 
better in building control applications, especially for passive occupants. Particularly, based on the observation 
that the temperature setpoints rarely change at the TNO Stieltjesweg offices, a simple model will be 
implemented which predicts the setpoint values for the coming day based on the values of the past day. This 
model sets a base-line accuracy for setpoint prediction in building control application at the TNO Stieltjesweg 
office building, If the resulting accuracy turns out to be not high enough, more elaborate models will be 
implemented and tested against measured data. For the fault detection application measured data will be 
used directly. 
Based on the literature review, the models to predict appliances use include both statistical models, which 
sample from electric power usage distributions at different occupancy regimes, as well as the machine learning 
models which learn the future trend based on historical data. As discussed in the report, both approaches 
have their advantages and disadvantages, and their accuracy varies across use cases. At the TNO Stieltjesweg 
office building only the power use of some electrical appliances has been measured during a limited period, 
which in turn limit the modelling possibilities. It has been proposed to use the measured data to construct an 
average profile for electricity use of appliances at each zone, for each hour of the day, and day of the week. 
The profiles are related to occupancy similarly to what is suggested in (Mahdavi, Tahmasebi, and Kayalar 
2016), and are used both for fault detection and building control. 
Statistical models based on logistic regression have been proposed in the literature to capture both closing 
and opening of the blinds. Although this is a valid modelling approach, it cannot be used to model the blinds 
use behavior at the TNO Stieltjesweg office building, as there is no measured data to train the models. Instead, 
it has been proposed that the shading factor associated with manually controlled internal blinds will be inferred 
from measured indoor temperature, as a part of the calibration of the digital twin. This approach will be used 
both in fault detection and building control. 
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