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SUMMARY 
This study aimed to gather information, together with the researchers working on Work Package 1 (error 

detection and error diagnosis) and Work Package 2 (flexibilization), about the views of the market regarding 

the integration of user data and feedback to their services and products: what is the market already doing in 

this area and what are their plans. The perspective from the market can help the researchers in WP1 and WP2 

to align their developments better with what the market’s current efforts demands. This report documents the 

steps taken to achieve this and summarises the knowledge that has been collected. As sources of information, 

we undertook a literature study to establish the state of the art in academia on the role of user data in building 

systems and user interfaces (occupants and facility managers). In addition, we gathered input from the 

industry partners in our B4B project, where the aim was to find out how they currently integrate user data in 

their products and what their ambitions are for the future.  

This resulted in the following conclusions: 

Occupant-related data and occupants’ behaviour models to facilitate building management and control  

The literature study showed that many occupancy models had been developed to integrate different types of 

occupant-related data into building control and performance models. However, the investigation with 

companies shows that these models are not yet currently used in practice. 

The interviewed companies gather some occupant-related data, but the use of the data is still limited to 

satisfaction with the indoor conditions or complaints about it. However, some partners are working towards 

gathering better user experiences in the buildings, for example, the Mood Box in development by Strukton and 

the plans from O-Nexus to understand occupants’ satisfaction and mood through the analysis of existing 

building data. 

The interviewed partners perform fault detection and diagnosis based on rules (rule-based) of indicators such 

as sensor ranges and trends. Furthermore, energy prediction and optimization are performed using black box 

models using the available building sensors. Here, some partners opt for a minimal sensor approach to reduce 

costs, whereas others prefer placing extra sensors to achieve better data for their models.  

The partner’s user interfaces provide feedback to the occupant on a high-level (narrowcasting) or not at all, 

whereas feedback to the professional end-user is typically not used yet. Regarding the occupants, there exists 

a general interest in user models. Specifically, partners are interested in exploring the relationship with 

perceived comfort to determine comfort ranges for energy flexibility and optimization. 

Feedback interfaces for building occupants 

For the state of the art, scientific articles related to feedback interfaces were sought. The investigation showed 

that although interfaces for building occupants are considered promising to decrease energy use using 

understandable information for users, there are still many limitations to their use, mostly related to their 

validity, replicability, and acceptance.  

On the other hand, the interfaces (dashboards and platforms) developed by the involved B4B partners involved 

in this study mainly focus on providing information to the facility managers and the building owner. Thus, they 

focus on energy and indoor environmental quality (IEQ) control and building performance. Partners seem 

interested in collecting more self-reporting data from occupants, for which the development of interfaces to 

collect such data is under development. However, none of these partners aims to focus on interfaces to provide 

information to the occupants of the buildings.  

The results from the Clima workshop with academics and practitioners identified similar requirements for the 

occupants’ interfaces as those found in the literature, such as the need for more understandable, accessible, 

and easier-to-read interfaces for the layperson. 

Interfaces for facility managers 

The state of the art study on interfaces for facility managers mainly focused on using BIM and other emergent 

smart technologies, their opportunities, and challenges. These technologies are seen as having great potential 

in increasing the effectiveness of FMs work and improving building performance. The main shortcomings of 

these technologies to support FMs are the lack of data integration and accessibility to data, lack of clear and 

understandable information, and lack of awareness and skills in the industry to use these technologies. These 

challenges were in line with the requirements identified during the workshop at the Clima conference. Further 

research will be aimed at working with FMs to determine these requirements.  

http://www.brainsforbuildings.org/
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1 INTRODUCTION 

This study aimed to gather information, together with the researchers working on Work Package 1 (fault 

detection and fault diagnosis) and Work Package 2 (flexibilization), about the views of the market regarding 

the integration of user data and feedback to their services and products: what is the market already doing in 

this area and what are their plans. The perspective from the market can help the researchers in WP1 and WP2 

to align their developments better with what the market’s current efforts demands. This report documents the 

steps taken to achieve this and summarizes the knowledge that has been collected. 

The following sources of information were used: 

− Literature: a literature study was performed to establish the state of the art in academia on the role of 

user data in building systems and on user interfaces (occupants and facility managers). The focus was on 

existing knowledge gaps and data integration challenges in building management and control.  The 

literature study is described in chapter 2. 

− The industry partners in our B4B project: Input from our industry partners was gathered in several ways. 

The aim was to find out how they currently integrate user data in their products and what their ambitions 

are for the future. To gather this information, the following activities were organised (described in chapter 

3): 

− Initial (physical) workshop (chapter 3.1.1) 

− A questionnaire was distributed among the industry partners in the project (3.1.2) 

− Industry partners in the project were asked to present their current products during workgroup sessions 

(3.1.2) 

− In depth interviews were conducted with our industry partners (3.1.3) 

− Information was collected from market perspective from a wider group during a workshop at the CLIMA 

conference 2022 in Rotterdam. The scope here was both on the integration of user interaction and on 

user feedback (3.2). 

The conclusions of the undertaken steps are summarized in chapter 4. 

http://www.brainsforbuildings.org/
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2 STATE OF THE ART 

In this section, we present a literature review on the state of the art on the two main issues investigated in this 

research: 1) current developments in occupancy models and occupants’ behaviour models for building control; 

and 2) current insights into the role of feedback interfaces to reduce energy consumption in buildings.  

2.1 The role of occupants-related data in building systems 

Occupants-related data comprises all possible information provided implicitly or explicitly by occupants in a 

smart building, such as presence, clothing, activities, interaction with the building (behaviour), comfort and 

satisfaction. Incorporating, assessing, interpreting, and applying these data in building systems is crucial for 

maintaining a healthy indoor environment and reducing energy consumption. In the past decade, several 

studies have focused on using occupants-related data to control office building systems and reported 

enhanced energy performances. These studies differed in terms of sensor technologies used, modelling 

techniques, control type and performance evaluations. Table 1 compiles a selection of the distinct studies 

conducted in the last ten years. For the scope of this project, the compilation is restricted to only studies 

conducted in office buildings. Comfort evaluation has been the scope of the study for only a few papers. In the 

rest, thermal comfort is only considered between a specified air temperature range for all occupants. Models 

like the predicted mean vote (PMV) and the adaptive model are used widely, but their accuracy has been 

criticised in the literature, indicating high subjectivity of thermal comfort. To tackle this subjectivity, self-

reporting of thermal comfort has been introduced. In the following sections, the different types of occupants-

related data currently used in building systems are summarised.  

2.1.1 Occupancy 

One of the most common and widely used sensors for occupancy detection is the passive infrared (PIR) sensor. 

These sensors can detect infrared radiation changes caused by occupant’s motion and thus can detect 

presence. Several studies have used PIR sensors for occupancy detection in buildings but accurately 

determining occupancy levels and zones is challenging. In 2006, Dodier et al. [1] presented a PIR sensor belief 

network for occupancy detection using Bayesian probability theory. Wahl et al. [2] proposed an occupancy 

counting system using pairs of PIR sensors to detect their moving directions. In 2016, Raykov et al. used only 

a single PIR sensor to estimate the occupancy count. They implemented an infinite hidden Markov model 

(HMM) to extract motion patterns and then statistical regression methods to infer the number of occupants 

up to an accuracy of 80%. Motion sensors-based machine learning models have also been presented by 

studies to determine occupancy with increased accuracy of up to 90%.  

Measuring power consumption using smart meters has also been used to predict occupancy with reasonable 

accuracy. Chen et al. [4], Kleiminger et al. [5], Kleiminger et al. [6] obtained accuracy between 60-80%, 

whereas Akbar et. al.[7] and Becker and Kleiminger [8] claimed to achieve an accuracy of 94% and 90% 

respectively.  

Another popular non-intrusive sensor is the CO2 sensor. Initial studies were only able to detect whether 

occupants were present in a zone [9-11], but recent studies use machine learning techniques to predict 

occupancy levels as well [12-15]. To further increase the accuracy of this prediction, a network of multiple 

sensors which measure humidity, light, and pressure is also used in the literature [16-19]. However, the 

modelling techniques used are complex and difficult to reproduce. 

All the technologies mentioned above require a setup of sensors and complex modelling techniques to 

accurately predict occupancy. The use of mobile networks, GPS, and Wi-Fi, though a bit intrusive, provide an 

accurate level of occupancy in offices without requiring to setup an expensive network of sensors. Balaji et. al. 

[20] presented an occupancy-based HVAC control using existing wi-fi infrastructure for office buildings. Several 

other studies use cellular networks, GPS for building control actuation [21-23]. Other technologies include 

cameras which provide an even higher accuracy (99%, Munir et al. 2017 [24]) but are either costly or highly 

intrusive. 

2.1.2 Activity level 

Metabolic rate is a significant parameter in the PMV thermal comfort model. One of the ways in which it can 

be determined for an occupant is by knowing or monitoring their activities. In buildings, methods have been 

proposed for detecting occupant activities through visual, acoustic, and CO2 sensors. Lu et. al. [25] used a 

static RGB camera for classifying activity levels and used it for real-time HVAC control. The accuracy of this 

classification was claimed as 90%. Benzeth et al. [26] proposed a vision-based system for human detection 

http://www.brainsforbuildings.org/
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and activity analysis based on video sequences using a static camera. Wolf et al. [27] presented a hidden 

Markov-Switching model using CO2 sensors to determine activity levels with an average accuracy of around 

85%. Zhang et al. [28] present a structural vibration-based occupant activity level estimation method by 

placing a sensing unit inside the floor. 

2.1.3 Window opening/closing  

Fritsch et al. [29] developed a mathematical model to predict window opening angles using the Markov chain 

model. They built four Markov chains to realise the link between outdoor temperature and occupant action 

concerning windows. Markovic et al. [30] used indoor air temperature; outdoor climate features such as 

outdoor air temperature, precipitation, wind velocity, wind direction, CO2 and relative humidity (RH) to model 

window opening/closing actions. They used support-vector machines and random forest to predict window 

status up to 88% accurately. Cali` et al. [31] reported that the significant parameters influencing the opening 

action are the time of day and CO2 concentration and that the most common driving factors for the closing 

action are the outdoor temperature and time of day. D’Oca and Hong [32] also documented that indoor air 

temperature, outdoor air temperature, arrival/leave time, time of day and occupancy are the top five features 

influencing window opening/closing. They further classified occupant behavior into three types: 1) thermal-

driven, 2) time-driven, and 3) thermal-driven & time-driven, which depend on the type of building, activities 

carried out in the buildings, and building users.  

2.1.4 Comfort/Satisfaction 

One of the major functions of buildings is to maintain a comfortable indoor environment for its occupants, as 

it can affect their productivity and health. Thermal comfort is a much-studied topic and has been shown in the 

literature to be dependent on several environmental, physiological and psychological factors. In 1970, Fanger 

performed extensive experiments to study the thermoregulation of the human body and developed the 

predictive mean vote (PMV) model [33]. It has since become the basis for standards like ASHRAE 55 and EN 

16798-1:2019 for conditioning indoor spaces in a building. Comfort evaluation has been the scope of the 

study for only a few papers. In the rest, thermal comfort is only considered between a specified air temperature 

range for all occupants. Models like PMV and the adaptive model are used widely. Still, their accuracy has 

been criticised in literature due to the high subjectivity of thermal comfort caused by the specific comfort 

preferences of individuals. To consider this subjectivity, some studies have focused on self-reporting of 

comfort. Erickson and Cerpa (2012) [34] [UN1] developed a mobile application for self-reporting and used the 

PMV model as the baseline for real-time HVAC control. Feldmeier and Paradiso (2010) [35] developed 

wearable actuation hardware for sensing indoor environmental conditions, occupants' location, and their 

physiological parameters. They used Fisher's linear discriminant analysis to model comfort based on self-

reporting data gathered from the wearable device but employed only a 3-point scale (hot, neutral, cold) as 

opposed to a 7-point scale in PMV. Liu et al. also used a 3-point scale as an output for their neural network 

model of thermal comfort. For data collection, they kept the subjects in experimental conditions for 30 mins 

and asked them to fill out a questionnaire. 

Table 1 Studies focused on occupant behaviour modelling in the last ten years. 

Reference Sensor 

Technologie

s used for 

Occupancy 

Detection 

Control Performance Evaluation 

Control Type HVAC 

Control 

Temperature 

Control Strategy / 

Comfort objective 

Evaluation 

Method 

Energy 

savings 

(Upto) 

Comfort 

Evaluation 

Sentinel [20] Wifi nework Reactive H/V/C Setpoint/Setback 

(21°C-25°C) 

Field evaluation 17.80% X 

Occupancy-

driven EM for 

SMA [36] 

Door Reed 

switches, 

PIR 

Reactive H/C Setpoint/Setback 

(22.9°C-26.1°C) 

Simulation 15.00% X 

Assessing the 

impacts of real-

time 

occupancy 

state 

transitions on 

building 

heating/coolin

g loads [37] 

Scheduled Rule based 

Control 

H/C Setpoint/Setback 

(22.78°C/25.56°C

) 

Simulation 28.30% X 

http://www.brainsforbuildings.org/
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Reference Sensor 

Technologie

s used for 

Occupancy 

Detection 

Control Performance Evaluation 

Control Type HVAC 

Control 

Temperature 

Control Strategy / 

Comfort objective 

Evaluation 

Method 

Energy 

savings 

(Upto) 

Comfort 

Evaluation 

Multiple 

perspectives of 

the value of 

occupancy-

based HVAC 

control 

systems [38] 

Scheduled Rule based 

Control using 

occupancy 

probability 

H/V/C PNNL model Simulation 50.00% X 

Using machine 

learning 

techniques for 

occupancy-

prediction-

based cooling 

control in office 

buildings [39] 

Motion 

Sensors 

Rule based 

Control using 

occupancy 

probability 

C Setpoint/Setback 

(22.5°C/35°C) 

Field evaluation 52.00% X 

Occupancy 

prediction 

algorithms for 

thermostat 

control 

systems using 

mobile devices 

[21] 

Cellular 

network, 

WiFi 

Rule based 

Control using 

preconditionin

g time 

H (22.9°C/24°C) Field evaluation 26.00% X 

ThermoSense: 

occupancy 

thermal based 

sensing for 

HVAC control 

[40] 

Thermal 

sensors, PIR 

Rule based 

Control using 

preconditionin

g time 

H/V/C Setpoint/Setback 

(20°C/24°C) 

Simulation 25.00% X 

OBSERVE: 

occupancy-

based system 

for efficient 

reduction of 

HVAC energy 

[41] 

Cameras Rule based 

Control using 

preconditionin

g time 

H/V/C Setpoint/Setback 

(21.11°C/27.78°C

) 

Simulation 42.00% X 

POEM: power-

efficient 

occupancy-

based energy 

management 

system [42] 

Cameras Rule based 

Control using 

preconditionin

g time 

H/V/C PMV Field evaluation 

and Simulation 

26% and 

30% 

respectivel

y 

X 

A Systematic 

Approach for 

Exploring 

Tradeoffs in 

Predictive 

HVAC Control 

Systems for 

Buildings [43] 

PIR 

Ultrasonic 

sensors 

Rule based 

Control using 

preconditionin

g time 

H/C Setpoint/Setback 

(20°C/24°C) 

Simulation 28.00% 40% 

improvement 

in Thermal 

comfort 

Importance of 

occupancy 

information for 

building 

climate control 

[44] 

Bluetooth 

tags 

Optimal 

Control 

H/C Setpoint/Setback 

(22°C/24°C) 

Simulation 2% 50% decrease 

in thermal 

discomfort 

Personalized 

HVAC Control 

System [35] 

Scheduled Optimal 

Control (MPC) 

H/C Setpoint/Setback 

(21°C/26°C) 

Simulation Negligible X 

Sentinel [20] Wearable 

(watch) 

Reactive C/V Self reporting Field evaluation 24.00% Self-reporting 

of thermal 

comfort 

Thermovote: 

Participatory 

Sensing for 

Efficient 

Building HVAC 

Conditioning 

[34] 

Cellular 

network, 

WiFi 

Reactive H/V/C PMV - AMV (actual 

mean vote) 

Field evaluation 10.10% Interview for 

assessing 

satisfaction 
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Reference Sensor 

Technologie

s used for 

Occupancy 

Detection 

Control Performance Evaluation 

Control Type HVAC 

Control 

Temperature 

Control Strategy / 

Comfort objective 

Evaluation 

Method 

Energy 

savings 

(Upto) 

Comfort 

Evaluation 

User-led 

decentralized 

thermal 

comfort driven 

HVAC 

operations for 

improved 

efficiency in 

office buildings 

[45] 

X Reactive H/V/C f (Self-reporting, 

Current room 

temperature) 

Field evaluation 26.00% Self-reporting 

of thermal 

comfort 

A neural 

network 

evaluation 

model for 

individual 

thermal 

comfort [46] 

X X X Predefined values Field evaluation N.A. Self-reporting 

of thermal 

comfort 

A personalized 

measure of 

thermal 

comfort for 

building 

controls [47] 

Fixed 

occupancy 

(6) 

MPC L X Field evaluation X Self-reporting 

3 point scale 

Human-

Building 

Interaction 

Framework for 

Personalized 

Thermal 

Comfort-Driven 

Systems in 

Office Buildings 

[48] 

Motion 

Sensors, 

PIR, Indoor 

temperature

, CO2, 

humidity, 

door status, 

light and 

sound 

Reactive V/C f (Self-reporting, 

Current room 

temperature) 

Field evaluation X Mobile 

application for 

self-reporting 

of thermal 

comfort (7-

point scale) 

A data-driven 

method to 

describe the 

personalized 

dynamic 

thermal  

comfort in 

ordinary office 

environment: 

From model to 

application 

[49] 

Fixed 

occupancy 

(9) 

X X X Field evaluation 6% desktop 

application for 

self reporting 

of thermal 

comfort (5-

point scale) 

iLTC: Achieving 

Individual 

Comfort in 

Shared Spaces 

[50] 

Wifi nework Reactive H/C/L f (Self-reporting, 

Current room 

temperature) 

Field evaluation 39% Mobile 

application for 

self-reporting 

of thermal 

comfort (7-

point scale) 

Personalized 

human comfort 

in indoor 

building 

environments 

under diverse 

[51] 

conditioning 

modes 

Mobile 

application 

Reactive H/V/C f (Self-reporting, 

Current room 

temperature) 

Field evaluation X Mobile 

application for 

self-reporting 

of thermal 

comfort (7-

point scale) 

Uncomfortable 

reports 

reduced by 

53.7% 

Model-free 

HVAC control 

using occupant 

feedback [52] 

Mobile 

application 

Reactive H/V/C f (Self-reporting) Simulation 50% Self reporting 

3 point scale 

Personal 

comfort 

models: 

Predicting 

individuals' 

thermal 

Fixed Manual H/C Manual Field evaluation X Developed 

comfort 

models using 

heating/coolin

g behaviour 

data 
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Reference Sensor 

Technologie

s used for 

Occupancy 

Detection 

Control Performance Evaluation 

Control Type HVAC 

Control 

Temperature 

Control Strategy / 

Comfort objective 

Evaluation 

Method 

Energy 

savings 

(Upto) 

Comfort 

Evaluation 

preference 

using  

occupant 

heating and 

cooling 

behavior and 

machine 

learning [53] 

Integrating 

occupants’ 

voluntary 

thermal 

preference 

responses into 

personalized 

thermal control 

in office 

buildings [54] 

Fixed Reactive H/V/C f (Self-reporting, 

Current room 

temperature) 

Field evaluation X Interface for 

self-reporting 

Improving 

occupancy 

presence 

prediction via 

multi-label 

classification 

[55] 

Motion 

Sensors 

SVM, Random 

forest, 

Decision tree 

kNN 

Predictiv

e Control 

X X X X 

PROMT: 

predicting 

occupancy 

presence in 

multiple 

resolution with 

time-shift 

agnostic 

classification 

[56] 

PIR kNN-DTW, 

Random 

forest, SVM 

Predictiv

e Control 

V f (Occupancy) X X 

A context-

aware method 

for building 

occupancy 

prediction [57] 

PIR motion 

and acoustic 

sensors 

Markov model, 

Semi-Markov 

model 

Predictiv

e Control 

X X X X 

Modeling 

occupancy 

behavior for 

energy 

efficiency and 

occupants 

comfort 

management 

in intelligent 

buildings [58] 

Motion 

sensors 

Genetic 

programming 

Predictiv

e Control 

X X X X 

Modeling 

regular 

occupancy in 

commercial 

buildings using 

stochastic 

models [59] 

Camera Markov model Predictiv

e Control 

X X X X 

Occupancy 

prediction 

model for 

open-plan 

offices using 

real-time 

location system 

and 

inhomogeneou

s Markov chain 

[60] 

RTLS (Real 

time 

location 

sensors) 

Markov model Predictiv

e Control 

H/V/C Setpoint/Setbac

k 

X X 

Optimizing 

energy 

consumption 

RTLS (Real 

time 

Proportional 

model 

Predictiv

e Control 

H/V/C Setpoint/Setbac

k 

Simulation 2% 
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Reference Sensor 

Technologie

s used for 

Occupancy 

Detection 

Control Performance Evaluation 

Control Type HVAC 

Control 

Temperature 

Control Strategy / 

Comfort objective 

Evaluation 

Method 

Energy 

savings 

(Upto) 

Comfort 

Evaluation 

and occupants 

comfort in 

open-plan 

offices [61] 

using local 

control based 

on occupancy 

dynamic data 

location 

sensors) 

 

2.2 Interfaces for building occupants 

The end users of buildings interfaces can be categorized in: building/real estate owner, facility managers and 

building occupants (e.g. office workers and students). In this section we present a non-exhaustive literature 

review on the role of interfaces for building occupants and facility managers.  

2.2.1 Energy efficiency and energy savings in buildings  

Building owners and energy providers rely on the final consumers 

(building users) to decrease and balance their energy consumption. 

Consumers have been identified as the main actor in influencing the 

energy transition towards post-carbon societies [62-64]. Consumers are 

encouraged to contribute to higher energy efficiency in cities by focusing 

their efforts on energy saving or load shifting to periods when energy 

sources are cleaner [65-68].  

In this regard, smart data-driven technologies have great potential for 

energy reduction and management. Recent technological developments 

in sensors, energy meters and data transport and storage have enabled 

possibilities to monitor the actual and real-time performance of buildings 

to help occupants to use buildings more efficiently and sustainably [69-

73]. 

However, it is not yet understood how far feedback to building users can 

support the transition towards more energy-efficient behaviours in the 

long run [74], and which groups of people can benefit the most from 

them [75-78]. Large differences in the amount of energy saved (from 0% 

to 32%, but usually between 5% and 12%) have been found in recent 

studies [67,79-84]. An often-seen shortcoming of these solutions is 

participants returning to old behaviours after the end of the program 

[74,85-89].  

A major constraint in the impact of such data-driven solutions is the great 

diversity of final users with different lifestyles [74,90]; preferences and 

changing energy requirements make these advances difficult [71,91].  

2.2.2 Energy feedback and visualisations 

Energy is a concept that, for many people, is difficult to understand, and most people find it difficult to link the 

impact of everyday activities to energy use or to environmental impacts [92-94]. Authors have found that 

people hold misperceptions around energy use [89,92,95,96], often underestimating saving associated with 

building energy efficiency measures and overestimating savings produced by curtailment behaviours, or not 

understanding how much energy different actions require [96]. For example, Photovoltaics are often 

introduced and perceived as free and green electricity, causing a rebound effect even among careful energy 

consumers [97]. Furthermore, with the incorporation of smart technologies in buildings, occupants are faced 

with complex systems that are difficult to operate, which can lead to an increase in energy consumption and 

a decrease in overall satisfaction [98-102].  

Energy feedback and visualizations based on real-time information have been identified as an opportunity to 

increase energy awareness and understanding of daily practices’ effect on energy use [68,74,94,103,104]. 

But so far, the effect of smart meter feedback alone on reducing energy demand have been questioned [105-

Building users can influence 

temperature in a room by using 

app. In this case, users prefer the 

max cooling setting. Information on 
fresh air (“178m3/h") will not 

mean anything to most building 

users.  (DGBC office, The Hague). 
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109] for example, due to the difficulties of keeping long-term interest in it [94,76,110] but also due to lack of 

understanding of displays [111]. According to Boomsma [94], there is still the need to develop educational 

tools to understand the concept of energy in daily activities that can engage people in energy-saving actions 

in the long term.  

Furthermore, data collection and analysis have proven difficult to maintain, given the large amount of data, 

the great diversity of occupancy patterns, financial barriers for large-scale monitoring, privacy concerns, and 

lack of reliability of the systems [112-116]. For example, Csoknyai [112] and AlSkaif [69] have emphasised 

that metered data is insufficient to draw conclusions about energy consumption habits or engage users in 

energy-efficient practices.  

2.2.3 The underlying problem of feedback interfaces 

The role of the context and the user 

Most data-driven solutions tackling behavioral change target energy reductions without considering: 1) energy-

related daily practices and technologies and systems present at home, and 2) the type of user.  Human-building 

interactions are highly context-dependent [117]. Evidence suggests that human-building interactions are 

driven by contextual factors such as building conditions and characteristics [118-120].  Identifying the 

contextual factor (building characteristics and building technology) is critical for designing behavioral change 

interventions that support actual user needs and preferences [73,121,122]. However, most studies fail to 

provide a systematic analysis of the contextual factors [73] especially those related to social and psychological 

dimensions [123]. The type of building technology available and other building characteristics will affect how 

people use the buildings, and thus, any behaviour change will also be determined by them. 

Research implementation and confounding factors 

Past research has focused on determining the effectiveness of interventions for behavioral change to reduce 

energy consumption in buildings. Only some interventions have shown a moderate level of success. For 

example, many studies measure or report on variables that can be affected by many other factors. For 

example, total energy consumption and indoor air temperature are often used as indicators without 

considering that these are influenced by other variables such as weather, the efficiency of building systems, 

etc. In other cases, the ‘intention’ for behavioral change is measured and not the real outcomes. For example, 

Ro [124] designed an applied game intervention but did not verify whether the players actually engaged in the 

sustainable actions they claimed credit for. In this regard, the research implementation might also affect the 

lack of certainty in the outcomes.  According to Johnson [125], “the reliability on the interventions is partially 

undermined by shortcomings identified in the methodology including small sample sizes, poorly described 

methodologies, limited use of validated measures to quantify outcomes, absence of controls, presentation of 

descriptive statistics only and narrow data collection timeframes”. Morganti [126] agrees on the need to 

identify of a common methodology and standard measures to evaluate the outcomes of these interventions, 

since uncertain results might be explained by the measures used to assess their effect.  

Another reason for the lack of certainty in outcomes in applied games interventions are confounding factors 

overlooked during the research implementation. For example, Csoknyai [112] reported to have more than 50 

communication actions to stimulate the participants to use their app, but no control group was used to 

determine the effect of such communications in the intervention outcomes.   

2.3 Interfaces for facility managers 

According to Carreira et al [127], facility managers (FM) practitioners have started adopting computerized 

tools, which help automate routine tasks, manage information, monitoring building’s performance and assist 

in decision-making processes. Among these tools, BEMS, BAS, and BIM seem to be the most widely known 

and used. However other emerging (also called disruptive) technologies such as Virtual Reality (VR), 

gamification and serious games approach, and AI, are often mentioned in research papers.  

2.3.1 FM-information systems 

One of the roles of a FM is the maintenance of the building. In current practice, FMs make use of two different 

types of information systems 1) building energy management systems (BEMS) and building automation 

systems (BAS) to monitor and optimize the performance of the building, based on the reports of failures from 

direct digital controllers (DDC), and 2) computerized maintenance management system (CMMS) where facility 

maintenance data are typically stored and managed. These two types of systems are however not (well) 

integrated. Ideally, these systems should be able to share information with each other in an automated 

manner, as well as to optimize the process for gathering maintenance-related information [128].  
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According to Shalabi & Turkan [128], the shortcomings of Facility Management Information Systems have 

been identified as:  

− Building sensors and controllers are connected to the BEMS or BAS system, where they input data and 

report any flaws or equipment failures. However, current practices depend on manual data input during 

the O&M phase. 

− Sensors reporting data (DDCs) are typically numbered and organized based on their location in the building 

and presented in list format. However, data about their exact locations, the equipment affected by them, 

and their maintenance history information are not stored in BEMS. 

− Sensor outputs, energy performance metrics, and other building performance metrics are presented in 

two-dimensional (2D) histograms, tables, and lists of tasks or in similar formats, which require manual 

data extraction and interpretation. 

The shortcomings of computerised maintenance management systems (CMMS) have been identified as:  

− CMMSs have a data structure incompatible with BEMS [129]. 

− The CMMS interface lacks easy and direct access to the different resources needed by FMs for the 

maintenance process, such as: documentation, equipment, personnel, and availability of spare 

parts.[128].  

− The quality of maintenance data is highly dependent on the users’ interaction with the system since typical 

users are: FM personnel, including operators, technicians, and facility managers [130,131].  

− CMMS often lacks the capability to communicate the output data and support the user needs because it 

does not provide with a user-friendly interface or good visualization of data [128, 131, 132], and because 

they are not designed for the facility managers’ specific needs [130,132].  

In this regard, BIM is sought to improve the interoperability, visualization, and data fragmentation challenges 

[128]. Some of the advantages that BIM can offer to FM, identified by Matarneh et al. [133] are the following: 

− BIM can provide FMs with access to digital information about facility components and equipment from one 

unified source [134].  

− BIM can reduce the time to locate facility assets [136-138], improve fault detection and diagnosis in all 

construction phases, and it supports collaboration and enhances data visualization [139-141].  

− BIM can provide comprehensive and accessible real-time information through the building life cycle [134, 

141, 144].  

− BIM can support other FM activities, such as market intelligence and satisfaction surveys [142], and 

prepare rental contracts [143].  

− BIM can enhance building energy performance and occupant value [140, 145].  

2.3.2 Application fields of emerging technologies within FM 

Marocco and Garogolo [146] identified four main application fields of emerging technologies within FM, which 

include: information management, maintenance management, energy management and emergency 

management. In the same line, Matarneh et al [133] identified 7 research patterns in the field of BIM for FM: 

information management, opportunities for BIM in facility management, maintenance management, energy 

management, existing building audits and surveys, engagement of FM in design stage through BIM, 

refurbishment/retrofit, and health and safety management. Within the scope of the B4B, the applications for 

maintenance management and energy management are relevant. Information management can be 

considered within both energy and maintenance management.  

Maintenance management 

Maintenance can be reactive/corrective, programmed/preventive and predictive [51]. While the first one 

responds to a cause of failure or breakdown [147], programmed and predictive maintenance aims to act in 

advance to prevent possible deteriorations and failings [146]. There are two main challenges in maintenance 

management: automation and data integration.  

Developments in this area focus on automatic detection and identification of potential operational faults by 

exploiting real-time data.  

FMs with managerial roles are likely to interact with computer-aided facility management systems (CAFM) and 

computerized maintenance management systems (CMMS) to manage the characteristics of space and 

equipment [127]. On the other hand, FMs with operational roles are more likely to interact with building 

managements systems (BMSs) and energy management systems (EMS) to manage real-time information 

regarding spaces and equipment. Therefore, there is a need for the information from these different tools to 

be brought together more efficiently and effectively [127,148]. 
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Current solutions include integrating BIM and FM systems' information using different technologies, such as 

semantic web technology, “to help maintenance personnel to efficiently track and control the whole 

maintenance management process” [149], and “integrating BIM and knowledge systems in a case-based 

reasoning module to enable maintenance information retrieval and knowledge sharing to solve maintenance 

problems” [147, 150]. Other attempts focused on developing automated approaches to define possible 

causes and retrieve related information to facilitate the process of HVAC troubleshooting [151,152].   

Energy management 

According to Marocco and Garogolo [146], current research on disruptive technologies for energy management 

focuses on real-time energy monitoring and assessing and optimising energy building performance. Within the 

B4B project we consider these applications as a single one since real-time energy monitoring is necessary to 

assess and optimise energy performance [146]. A review from Matarneh et al [133] showed that current 

studies focus on different approaches to implementing BIM in energy management, such as:   

1) using BIM for monitoring, analysing and optimising the performance of systems and on developing and 

implementing an operational strategy;  

2) building energy consumption assessment to support management decision-making, and  

3) visualizing sensor data in 2D and 3D BIM environments to support energy-saving management decision-

making.  

Information management  

According to Matarneh et al [133], BIM offers opportunities to improve facility management by providing a 

unified platform for various data sources needed for daily Operation and Management. However, the FM teams 

continue to struggle with information management, mainly because of the various FM information systems, 

which lack interoperability. According to Matarneh [133] the future research agenda involves: 

1) integrating different energy information streams, including BIM models, to enhance the visibility of facility 

performance and to promote better energy management,  

2) utilizing information collected by capturing actual facility energy data in BIM-based simulations for more 

efficient energy performance analysis to support energy retrofit decisions, and 

3) identifying the required energy data from BIM models from an FM perspective.  

2.3.3 Opportunities and challenges of emerging technologies within FM 

The following opportunities and challenges of emerging technologies such as BIM, AI and IoT have been found 

in the literature:  

Opportunities / advantages  

− Data entry efficiency - BIM acting as a central data repository for the whole building’s lifecycle from design 

to operation and maintenance could eliminate redundancy in data re-entry ( [128, 153]. 

− Data accessibility - BIM can increase the efficiency of work order executions by providing faster access to 

data and by improving the process of locating various facility elements [128, 154]. 

− Data accessibility - GIS applications can be used to access information [127, 155].  

− Data integration – For BIM to be the basis for constructing digital twins requires data integration from 

other resources. Cloud computing, BIM and IoT technologies can provide high-fidelity operable datasets in 

real-time, allowing advanced analysis through AI agents [146]. 

− Data integration/understanding - BIM applied to operation and maintenance provides the ability to extract 

and analyze data for various needs that could support and improve decision-making [128, 156].  

− Data understanding - Data visualization can allow the analysis and presentation of data using computer 

graphics and interactive technologies [157]. 

− Data understanding - Using BIM models plus appropriate algorithms instead of paper blueprints, FMs can 

reconcile real components with the corresponding three-dimensional models [157]. 

− User engagement - Game-based systems could be applied to FM activities to increase engagement for 

building managers [146].  

Challenges / shortcomings of FMs activities 

− Awareness and skills - Responding and repairing systems’ failures in a timely fashion remains a challenge 

for facility managers [128, 158]. 

− Awareness and skills - Lack of the technical skills to manage the systems in the operational phase. 

Modelling and maintaining the models, along with collecting and analysing accurate maintenance data 

need knowledge, competencies and processes which are not standard in the FM context [146].  
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− Data understanding - FM information systems lack interoperability and visualization capabilities ([128]). 

− Data integration - Energy performance of buildings can deteriorate overtime because of lack of prompt 

response to faults/alarms reported by BAS and BEMS systems, imprecise commissioning, and BEMS/BAS 

malfunctioning ([128]). 

Challenges / shortcomings of current systems 

− Awareness and skills - Limited awareness of BIM benefits among facility management professionals, lack 

of data exchange standards, and unproven productivity gains illustrated by case studies, as well as lack 

of real cases for validating approaches and systems. [128,146].  

− Data accessibility - Data about the exact locations of BEMS and BAS microcomputer systems, the 

equipment affected by them, and their maintenance history information are not stored in BEMS [128]. 

− Data integration - Computer Maintenance and Management System (CMMS) have their data structure that 

is not compatible with BEMS [128, 129] and often lacks the capability to communicate the output data 

and support the FMs specific needs (lack of inoperability, visualization, user friendliness) [128, 130, 131, 

132].   

− Data integration  - There is a need to combine up-to-date and living data with static information. Computer 

Aided Design (CAD) systems cannot store and manage data as a centralised and unique repository and do 

not allow instant updates of all sources when some parts are modified [146]. 

− Data understanding - BEMS’ and BAS’ sensor outputs and performance metrics are presented in two-

dimensional (2D) histograms, tables, and lists of tasks or in similar formats, which require manual and 

tedious data extraction and interpretation [128] 

Challenges / shortcomings related to the deployment of Digital twin platforms 

− Data integration – Different data collection devices store information into different formats and databases, 

leading to the issue of lack of interoperability and separated data silos [146]. 

− Data understanding - Visual outcomes in tables and graphs can facilitate the understanding and 

interpretation of data, especially for non-experts of data analysis [146]. 

− Awareness and skills - Considering the experience and knowledge of workers are critical to guide decisions 

but often neglected. Defining performance indicators for strategic decision methods based on data and 

worker expertise could be a topic of interest [146]. 
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3 INPUT FROM A MARKET PERSPECTIVE 

In this section, we report the findings from our interaction with market parties. Most of the information came 

from our partners in the consortium (see 3.1), but we also used the CLIMA2022 conference to gather 

information from stakeholders outside the consortium (see 3.2).  

3.1 Input from the industry partners in our consortium 

Input from the industry partners in our consortium was collected on various activities. First, a face-to-face 

workshop with partners was carried out to provide an overview of the interests, goals and current 

developments of the partners in the consortium and, more specifically, of the WP3 partners (see 3.1.1). Based 

on the workshop, we developed a questionnaire to be sent out to consortium partners to map out the current 

situation and objectives of the different partners, as well as to further define the use cases in WP3 (See 3.1.2). 

Furthermore, during the monthly WP3 meetings, relevant industry partners presented their products/services, 

followed by questions from other WP3 partners (also in 3.1.2). With these activities, we sought to answer the 

following questions:  

− What is the current approach used by the industry regarding the role of occupants in the 

performance/management of buildings? 

− How do companies consider the occupant in their product/services?  

This information led to more in-depth interviews with several partners (See 3.1.3). The aim was to find out in 

more detail how the partners perform fault detection and diagnoses, energy prediction and optimization, and 

feedback to the end-user at this moment and what they might be looking for in the future. 

In the following sections, we summarize the results of these activities. 

3.1.1  Workshop  

A workshop with consortium partners was organized during the first face-to-face consortium meeting in Delft, 

in November 2021. The workshop was intended to start a discussion with the project partners concerning 

occupancy data and its use in building control platform systems. The following questions were selected to be 

used via Mentimeter. 

− What is the aim of your product/service?   

− Who is your end user?  

− What kind of occupant-related data do you use?  

− What type of feedback do you give to the occupant? 

− What type of feedback do you give to the professional end user? 

− Which statement is closest to your philosophy? 

− What are your (short-term) plans or vision regarding user-centric systems and interfaces?  

First, the partners were asked about the aim of their product or service, and we provided 5 options, according 

to different topics identified for the B4B project: fault detection, energy management, building control, and 

energy flexibility. The results of the Mentimeter showed that most partners’ products or services focus on more 

than one aspect.  

 

Q1 - What is the aim of your product/service? Answers (N=10): fault detection (2), energy flexibility (4), energy 

management (5), building control (4), other (3). 

 

The second question was regarding the end user of the partners’ product. With this question, we also intended 

to make clear that we are not only focusing on the end user as the building occupants. The possible answers 

were: facility manager, building manager (gebouwbeheerder), building owner, company owner, and building 

occupants. Just as the previous question, the results show that the products are intended to be used by more 

than one type of end user.  

 

Q2 - Who is your end user? Answers (N=9): facility manager (5), building manager (gebouwbeheerder) (5), 

building owner (6), company owner (5), occupants (5), others (3). 

 

The third question concerned the type of occupant-related data used by the partners. In this case, the 

participants were left free to use any word they wanted, which resulted in the figure below. The results point 
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at some differences in what is considered occupant-related data. The words used can be categorized as indoor 

parameters/conditions (particulate matter, CO2 level, sound, temperature, light level and humidity), external 

conditions (solar radiance, rain, snow, particulate matter), building information (function, size, time schedule, 

workplaces, occupancy), resources consumption (heat, gas, water, electricity, equipment usage), occupants’ 

feedback (satisfaction and happiness) and personal data (email, passwords).  

The answers showed that most often, data collected is only indirectly related to the user (indoor/outdoor 

conditions and resource consumption). The only direct aspects considered are the presence of occupants in 

the building (occupancy), and satisfaction/happiness.  

 

Q3 - What kind of occupant-related data do you use? N=16 

 

 

The next two questions were about the type of feedback given to the end users, starting with the occupants. 

The responses were very varied from changing behaviour (i.e. through gamification, positive feedback, 

suggestions on how to adjust energy consumption behaviour and compliance reporting) to visual feedback on 

wellbeing (i.e. happy faces) based on the state of the building (CO2, air quality, etc.). The means to reach the 

occupants were also mentioned, for example push notifications and specific information in occupants’ screens 

(e.g. screens in meeting rooms).  

 

Q4- What type of feedback do you give to the occupant? N= 9 

− Not just straight data. Data linked to outcome on a screen. Meeting room and other screens are ideal. 

− Badges and awards 

− How to adjust energy consumption behaviour 

− None 

− Well-being index including simple gauges or happy faces on air quality, CO2 and so on. 

− Positive feedback on the impact they have had on energy and carbon saving and a reduction in a 

climate change rate. 

− Push notifications 

− Compliance reporting. 

 

The last question focused on the feedback provided to a professional end user (facility manager, building 

manager (gebouwbeheerder), building owner, company owner). The answers indicate that the feedback 

provider is about 1) regarding information about the building itself and its installations, the status of 

installations, 2) the performance of the building (energy efficiency related to target, normalized benchmarking, 

compliance reporting), and 3) strategies to improve the performance outcomes.  

 

Q5- What type of feedback do you give to the professional end user? N=9 

− Building use. Installation type. 

− Status reports of the installations 

− Data monitor 

− None 

− Insights on how to improve based on targeted outcomes 

− Energy efficiency related to target 
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− Compliance reporting 

− Normalized benchmarking 

− Business case of measures 

 

During the discussion of these two questions, the partners discussed the shortcomings seen in their own 

products/services. The main problem faced was that the end-users do not always use their platforms as 

intended.  

3.1.2 Questionnaire and workshop presentations 

During the WP3 meetings, industry partners were asked to talk about their products/services, as well as their 

ambitions concerning the B4B project. Furthermore, a questionnaire was sent to WP3 and other relevant 

partners with the same questions. The following information comprises a summary of five industry partners. 

Figure 1 shows an overview of the characteristics of the partner's systems.  

Client, main end-user and use by end-user 

A difference has been made between the client of the companies (the party who pays for the product or 

service), and the final end-user. Within this project, we consider the main end users to be either the facility 

managers or the occupants of the buildings (i.e., the office workers).  

The questionnaires and the presentations/interviews with partners showed that the client for most partners 

were the real estate/building owners, and in one case, the project developers. The main user falls in two 

categories: the real estate/building owners, and the facility managers. None of the partners focuses on the 

building occupants as end-user for their product or service.  

Feedback/info to the professional user 

The professional users are, in all cases, the building owner or the facility manager. The companies (all except 

Peutz) offer different dashboards for different users. Some dashboards can be customised according to the 

needs of the end-user. The information in the dashboard/platforms fall within all studied purposes: FDD, asset 

management, energy production, systems control, and so on. 

Model for energy prediction and rule-based algorithms to analyse data 

Both white box and (AI-based) black box models are used to predict energy use, energy productions, system 

setpoints and indoor conditions.  

How is occupants-related data collected? 

Only two partners currently collect data directly for the occupants (Unica and Spectral). The data collected, via 

email or apps consists of complaints and satisfaction with the indoor environment. Strukton is currently 

developing and testing a Mood Box also to gather data from the occupants. The occupants’ data is used for 

better management of the building in terms of energy efficiency and/or comfort. While Spectral makes use of 

the occupants’ data for better energy efficiency, Cloud Energy Optimizer only makes use of indoor 

environmental data to predict indoor comfort. Strukton and Unica use both types of data (indoor environment 

and occupants) for both purposes (energy and comfort). 

Feedback/information to and from the occupants 

As mentioned before, only three companies collect data from the users: Unica, Spectral and, in the future 

Strukton. These data are mostly related to satisfaction with the indoor environment and complaints. On the 

other hand, the only company whose systems communicate back with the occupants is Unica, which thanks 

the occupants for their input. None of the partners currently have a direct interface to communicate with the 

occupants. 
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Figure 1 Characteristics of B4B partners’ products/services 

3.1.3 In-depth interviews with the industry partners 

This section describes the results from interviews with B4B partners on end-user requirements for fault 

detection and diagnosis and energy flexibility control systems and interfaces.  

TNO conducted a series of interviews with B4B partners to add input to WP1 and WP2, and obtain information 

regarding interaction with interfaces for WP3. When analyzing these results, it should be considered that 

interviewed partners have clients with buildings ranging from big utility buildings to small and medium 

enterprises (SME) buildings and focus on clients with different levels of (building-) knowledge. The input from 

the partners was analyzed and this resulted in a summary matrix. The summary matrix can be found in Annex 

2. From the summary matrix the following conclusions were derived: 

The aim of the product and services of all partners is energy and comfort optimalisation. Additionally, (energy)-

reporting, building insights (e.g., occupancy of spaces), and fault detection are often named alongside this. 

End-users of these partners’ platforms and services can be grouped into the facility/property managers level 

(Unica, SPIE, Simaxx) and the building owners’ level (Cloud Energy Optimizer, O-nexus). The interviewed 

partners primarily use dashboards to serve end-users regarding consultancy and control. Specifically, Spectral 

is working towards flexible dashboards for building owners and facility managers. On the other hand, O-Nexus’ 

end-users amount to SME buildings and facility managers that are not specifically targeted.  

For some partners' clients, the key selling points are approximated promised energy and cost savings (Cloud 

Energy Optimizer, O-Nexus). In contrast, others mention reducing the man-hours of facility managers (Spectral), 

reducing the initialization time of installing external building control (Cloud Energy Optimizer), or combining 

data streams and portals into one place (Unica) as their key selling point. Besides, most partners mention that 

tenant occupant comfort is an added benefit to their primary business. 

Regarding fault detection and diagnosis, all interviewed partners perform fault detection via rule-based 

systems based on operating-ranges or trends.  

Prediction models for optimizing energy primarily comprise data-driven black-box models. Cloud Energy 

Optimizer and Spectral include physical properties like return temperatures of Air Handling Units (AHU) and 

the thermal mass of buildings as input for their models. Furthermore, Spectral uses Energy+ to generate 

synthetic dummy/training data to tune their energy black box prediction models. If data is not sufficient, usually 

extra sensors are placed. Additionally, it is often mentioned that the biggest uncertainty in these models is 

occupant behaviour. 
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Occupant-related data is either inferred from submetering, like time schedules, 

space utilization, room reservations (SPIE, Simaxx, Spectral), from directly 

measured parameters like tap-water and electricity use (O-Nexus) or return 

temperatures of the AHU (Cloud Energy Optimizer). Extra occupancy-related 

sensors are sometimes placed, such as infrared sensors (O-Nexus) and motion 

sensors (Spectral). Third-party reservation apps are also looked at to gather 

occupant-related data. Moreover, the occupancy data is also sometimes 

integrated as input for the energy-prediction model (Spectral, O-Nexus, CEO). 

Feedback to professional end-users occurs via dashboards, whereas feedback to 

building occupants is currently not performed. However, SPIE does use narrow-

casting by showing building performance on monitors in certain spaces.  

Feedback from occupants to the partners’ systems is gathered via ordinary 

complaint handling by email/customer service software (Cloud Energy Optimizer, 

Spectral). This complaint handling is, however not yet used in energy prediction 

models or fault detection. On top of that, SPIE is currently testing mood-boxes to 

receive user feedback, and Unica is testing a QR-scanning feedback app with 5 

questions about comfort, coupled with sensors in that room. 

Most interviewed partners are generally interested in having insights into the relationship between perceived 

and measured comfort. Here, the relationship between occupant satisfaction and realizing economic savings 

(Cloud Energy Optimizer) by determining comfort ranges to save energy is mentioned as a solid business-

incentive.  

Additionally, SPIE would like to stimulate occupants to provide feedback and would like to have automated 

improvements based on feedback values and energy flexibility opportunities. One mentioned value-proposition 

from a comfort improvement could be that tenants are likely to stay longer in buildings (Spectral). In line with 

this, O-Nexus would like to see a robust connection between occupant experience of comfort and data already 

present in a building, such as setpoint changes, expecting to see a correlation between e.g. setpoint changes 

and the occupant and their behaviour. 

In sum: The interviewed partners perform fault detection and diagnosis based on rules (rule-based) of 

indicators such as sensor ranges and trends. Furthermore, energy prediction and optimization are performed 

using black box models using the available building sensors. Here, some partners opt for a minimal sensor 

approach to reduce costs, whereas other partners prefer placing extra sensors to collect more data to achieve 

more accurate insight/control.  

The partner’s user interfaces provide feedback to the occupant on a high-level (narrowcasting) or not at all. In 

contrast, feedback to the professional end-user is typically not used yet. Regarding the occupants, there exists 

a general interest in user models. Specifically, partners are interested in exploring the relationship with 

perceived comfort to determine comfort ranges to use for energy flexibility and comfort optimalization. 

3.2 Input from a wider audience  

We benefited from the opportunity to discuss the market perspective with a wider audience at the CLIMA 

Conference 2022 in Rotterdam. During a 2-hour workshop on May 23, a group of around 30 participants 

discussed the need for more interaction between building energy systems and the users of the building during 

the session: “Smart buildings & interfaces for managers of buildings and facilities, and intelligence needed for 

occupant-HVAC interfaces at room level”. The session was hosted by Mirjam Harmelink (TU Delft), Marleen 

Spiekman (TNO), Sander van der Harst (Unica) and Frans Joosstens (HHS). Present during the session were 

facility managers (2), installation and design engineers (8), representatives from academia (19) and 

participants with other backgrounds (3). The discussion covered two topics: 

− Information and interaction for end users, facility managers and designers (3.2.1) 

− And the role and design of feedback (3.2.2) 

3.2.1 Input on information and interaction for end users, facility managers 

and designers 

During the workshop, stakeholders provided input via a Mentimeter session on the following two questions: 

− What information do you need to ensure that the building is energy efficient? 

− What interaction do you need with the building? 

Occupants and sensors do 

not always live  

together in harmony 
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Because some stakeholder groups were overrepresented and others were underrepresented, we asked all 

participants to put themselves in the position of a facility manager, a design engineer and an end-user and 

answer the questions accordingly.  

Facility managers 

In the result of the information needed by the facility manager, the following information pops out (see Figure 

2 for the whole overview): 

− Occupancy 

− Energy consumption 

− Benchmark 

− Temperature 

− User satisfaction 

− Energy usage 

− Real-time data dashboard 

 

Figure 2: Mentimeter result of the question: Put yourself in the position of a facility manager. What 

information do you need as a facility manager to ensure your building is energy efficient? 

It must be said that there were only two facility managers present, so most of the data come from participants 

that think this is what facility managers need. Based on these results, a real-time data dashboard with 

information on how many people are in the building (and where), the energy consumption and temperatures 

in the various rooms were seen as useful, probably this type of information could be used to have a good 

overview of the building performance (energy and indoor quality) in relation to the number of occupants. 

Accompanied by benchmarking on when energy consumption and temperatures are fine and when more 

attention is needed and accompanied by information on user satisfaction which also could indicate the need 

for attention.  

In the result of the interaction between facility managers and buildings that facility managers could help, the 

following information pops out (see Figure 3 for the whole overview): 

− As little as possible 

− Error messages 

 

http://www.brainsforbuildings.org/


 

www.brainsforbuildings.org      23/42 

Figure 3: Mentimeter result of the question: Put yourself in the position of a facility manager. What 

interaction do you want with the building?  

Most of the input given by the participants was actually on information from the building or systems, not on 

interaction with each other. This is consistent with the lack of need for interaction (‘as little as possible”). Either 

there is no wish for interaction between the building and the facility manager, or the added value of interaction 

is not yet clear. Both options are plausible: during the discussion, we learned that facility managers have many 

tasks and handling the energy use of the building is often not their highest priority. That can explain the feeling 

that no interaction is wanted since that would mean attention that can’t be given elsewhere. On the other 

hand, interaction with the building could mean that problems are more easily solved, so also less time is 

needed for this.  

Installation and design engineers 

In the result of the information needed by the installation and design engineers, the following information pops 

out (see Figure 4 for the whole overview): 

− User feedback 

− Occupancy 

− Sensors – monitoring 

− Installation performance 

These findings show a wish for both information based on monitoring with sensors and information directly 

from the building users. How many, when and where users are present in the building, clearly is an important 

aspect for engineers to control indoor comfort. And also, to monitor the performance of the systems seems an 

important factor.  

 

Figure 4 Mentimeter result of the question: Put yourself in the position of an engineer at an installation 

company. What information do you need to provide a good indoor climate comfort? 

In the result of the interaction between installation and design engineers and buildings that installation and 

design engineers could help, the following information pops out (see Figure 5 for the whole overview): 

− Occupancy 

− User feedback 

− System performance 
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Figure 5 Mentimeter result of the question: Put yourself in the position of an engineer at an installation 

company. What interaction do you want with the building?  

It is striking that these results are similar as when asked about what information was needed. Most of the 

input from participants were related to information instead of interaction. So maybe also here the concept of 

interaction and the added value of it is not yet clear. 

End-users (office workers) 

Finally, we asked the participants so put themselves in the role as end-user. In the result of the information 

needed by the end-users, the following information pops out (see Figure 6 for the whole overview): 

− Feedback 

− Possibilities (action perspectives) 

− Respect 

It is clear that end-users like feedback. The most prominent feedback they want is feedback on possibilities, 

which could be interpreted as the action possibilities for adapting the building to their comfort wishes. The 

more detailed input gives a lot of aspects that might be additional helpful feedback to end-users, such as 

current energy usage, CO2 and the effect of setpoint change. ‘Respect’ could be interpreted as: the building 

should have respect for the wishes of the end-user. As opposed to what is often heard: “the user just should 

not do that”. Combining this all: it might be helpful that an end-user gets feedback on alternative possibilities 

for action to reach the desired comfort instead of actions that result in a less efficient or effective situation.  

 

Figure 6 Mentimeter result of the question: Put yourself in the position of an office worker. What information 

do you need to contribute to a building which is energy efficient and healthy? 

In the result of the interaction between end-users and buildings, the following information pops out (see Figure 

7 for the whole overview): 

− None 

− Comfort 

− Control 

− (Possibility for) feedback 

 

Figure 7 Mentimeter result of the question: Put yourself in the position of an end-user. What interaction do 

you want with the building?  
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That no interaction is desired could be interpreted from the perspective that end-users think that the building 

should handle the indoor climate by itself and when it does a good job, no interaction is needed. This makes 

sense realizing that office workers are at the office to work and not to be troubled with controlling the building. 

There are others that state they like interaction on comfort at their workplace an on the control of their indoor 

climate. Feedback that goes two ways might be a way to enable this.  

3.2.2 Input on the role and design of feedback 

In addition to the Mentimeter questions, we also held a post-it session.  

We posed 5 questions and asked the participants to stock post-its with their ideas. The post-its were color-

coded: blue for facility managers, purple for installation and design engineers, yellow for academics and green 

for others. An example of the result is given in Figure 8. 

 

Figure 8 example of the post-it session result. 

The questions and post-it content are given in the table below. 

Table 2 Post-it content on the workshop questions  

1 What do end-users (office workers) do that they shouldn’t do in buildings which causes high energy use and a poor indoor climate? And 

what are the consequences? 

Facility managers Open windows to ‘solve’ outside condensation on triple glazing 

Block doors so they can’t close 

Open the window when it is hot outside; it is getting hot inside 

Installation/design 

engineers 

Heating and cooling at the same time 

Wear insufficient clothing 

Make changes for short amount of time 

Manually overriding automated processes (valves, fans, etc.) 

Upping setpoint temperature to the max, just to heat up the room quicker 

Forgot devices, AC on 

Opening windows and doors for hidden smoke 

Setting thermostats on the max or min 

Open windows 

Do not care about systems 

Give feedback 

Fight over thermostat 

Leave heating/cooling on when not occupied 

Leave lights on 

Disagree: people do something because they don’t like something: it is not their fault! 

Open sunshade when cooling 

Academics Open windows when it is hot/cold outside 

Too many people in an office: bad air quality opening windows 

How do we know what ‘they should do”? 

Maybe simulation assumptions where insufficient? 

Respond internally: don’t do anything 

Turn heating on 5 

More energy than predicted. Maybe the design assumptions do not match user’s needs 

Consider same individual preferences 

Heat at night 

Don’t change any setting. They don’t want to touch the system 

No one present but lights on 

Maybe they don’t like that the building is overheated in winter? (Opening windows) 

Sweat 

They lack knowledge 
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Others Opening windows when the heating is on 

Bypassing control, not through the system. Can be simply because there is no other option. System is thrown out of 

balance and starts compensating 

2 How could we avoid these unwanted situations? By what means? 

Facility managers Provide insight in control of the building 

Instruction 

Not allowing different scenarios 

Installation/design 

engineers 

Teach/train users, workshop 

Info dashboard 

Creating better buildings 

Energy use indicator at the thermostat 

On/off schedule to prevent unoccupied heating and cooling 

Display impact 

Training 

Information 

Automation 

User feedback 

Don’t build windows in a way that the user can open them 

Assure a comfortable indoor climate: if users feel comfortable they won’t touch anything  

Academics Real time occupancy monitoring (to limit wasted energy) 

Occupant -centered ventilation strategies 

To give meaning 

To promote a challenge between end-users 

Post messages on a wall 

Design installation to purpose occupants 

Fast feedback on user actions 

More m2 per worker, fewer desks / chairs per office, system of higher capacity 

Easy to read, real time, infographics on energy feedback environment impact informing 

Show real time energy bill (cost) to end users 

Better informing users about the building systems 

Information 

Usable buildings 

Expectation management 

Use automation to switch off 

Others Information at once 

Let users define comfort 

Give users control through the climate system 

3 How do we provide effective feedback to the building occupants? 

Facility managers Desk or pc inbuild dashboard 

Installation/design 

engineers 

VR? 

Dashboard simple no technical 

Someone will ask them 

Screens on meeting points 

Periodic surveys 

Feedback. What is good IAQ what is bad IAQ 

Simplified infographic 

Projection of impact if everyone does the same 

Information in dashboards 

Academics Warning sigh + suggested action 

Simplified reports, graphs, schemes 

Semaphore light red, orange, green 

Realtime data drive dashboard 

Digital communication + face to face communication 

Occupant personal history with the building to rase awareness 

Avoid; you should not… 

Suggest an action based on the measured metric 

Behaviour recommendations which reply to actual real needs 

Feedback on what the building does 

Offer a guide to ‘diverse’ environments ‘try the atrium its fresh and cool’ 

Others Via an app or edge device 

Insight in their own data coupled to objective measurements 

Benchmarking 

By email 

4 What are the requirements for user-interfaces? 

Facility managers Simple to use 

User friendly 

Explanation about what you see 

If you can fill in value’s; an example of what the value could be 

Installation/design 

engineers 

Human centered design 

No room for wrong choice (prevention by design) 

Simple 

Easy to connect 

Fast working 

In the future with mobile app 

Remotely connected 

Academics Easy interpretable (not 1500 ppm, but: bad) 

Easy usage 
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Usable for lay persons 

No information overload 

Situated in daily practices (cooking e.g.) 

Tuned to user knowledge 

See e.g. CANAIRI.IO 

Standardized 

Good indictor  

Simplicity 

Build on existing knowledge and skills 

Ergonomics 

Challenging 

Targeted to actual needs of user 

Related to user aims (e.g. find a comfortable room) 

Feedback 

Know the targeted users’ activity: this affects how to operate the interface 

Others (no input given) 

5 When do user-building interfaces become a business case? 

Facility managers When you can provide comfort as a service 

Installation/design 

engineers 

When they are stable/reliable/resist long enough to output learning 

Link it to the performance of the employees 

Integrated with BMS and energy management 

Scalability 

Easy to install 

Cheap 

Academics When personalized IAQ technology is in place 

When its application is generating economic profits (on the long-time) (e.g. higher satisfaction and productivity, 

lower energy expenditure 

More productive workers 

Low energy costs 

More maintenance instead of replacement 

When they are still effective after one year 

Occupancy complaints 

When we understand how to deal with individual preferences of occupants’ effective operation 

Others Whenever money comes into play 

The input from the post-it session gives us information that is very useful in a later stage of the project when 

we will design feedback to end users: 

− It provides us with many situations based on the participants’ experience where users and building 

systems interfere with each other, or where due to lack of knowledge 

users act less effective than they could (such as: heat at night, open 

window when it is too hot outside, so it gets hot inside, upping 

temperature to the max to heat up the room quicker, opening windows 

when the heating is on) 

− It provides us with ideas how this could be helped by feedback to users 

(such as: expectation management, real time information, fast 

feedback on user actions, to give meaning, provide insight in the control 

strategy) 

− Gives us ideas about how to give feedback (such as: via app, simple 

dashboard, with semaphore lights (red, orange, green), warning signs + 

suggested action, benchmarking) 

− Gives us input for requirements for user interfaces (such as: simple to 

use, explanation about what you see, tuned to user knowledge, related 

to user aims, a nice example see: CANAIRI.IO) 

− Gives us ideas about when user building interfaces become a business 

case (such as: when they can provide comfort as a service when they 

are stable/reliable, easy to install, cheap, when it leads to more 

productivity when they lead to fewer occupant complaints 

On the last topic (when does it become a business case) we had an 

additional discussion. The most interesting remarks during the discussion were the following: 

− How do you measure the success of feedback?  

− Improvement of productivity  

− Do you measure negative impact or positive impact: e.g. happiness? 

− Don’t give feedback too often 

− Climate is something people do not notice when it is good enough 

− The explanation why the situation is as it is or why it is not possible what you want: manage expectations 

− Feedback can show what is not there and where the system will lead to (e.g. when the system reacts slow) 

Visual feedback: If CO2-levels 

are too high, the canary will 
‘die’ and fall down from its 

stick. 
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− Facility managers have a lot of tasks and no time to interact with the building.  

− Every building is different, feedback system needs to be flexible 

− Users do not want too much interaction: they are in the office for other reasons  

Part of these remarks will be taken into account in further phases of the research activities of B4B project. 

3.2.3 Conclusions from the CLIMA2022 workshop: 

The CLIMA 2022 workshop was a big success and gave us a lot of input for designing feedback systems for 

professionals and end-users.  

Firstly, we learned that facility managers have many tasks, so they don't have time to investigate energy and 

comfort. They want to solve problems quickly, preferably by calling someone. So, there may be more demand 

for a service that anticipates problems or tracks things down for them than for them to do it themselves. Since 

there were not many facility managers present, it is unclear whether this applies to all facility managers or 

whether it is different for large companies with specialised departments dedicated to this. 

Installation and design engineers are most helped with information on specific system performance via 

sensors and user feedback about their comfort.  

End-users could be helped by getting information on their option: when they are not happy, what are their 

options, and what would be the consequence of these options? 

The feedback design could gain when it focuses on situations where users and building systems interfere with 

each other or where, due to lack of knowledge, users act less effectively than they could. Possible feedback 

could be focused on expectation management, real-time information, fast feedback on user actions, giving 

meaning, providing insight into the control strategy etc. And it would probably work best when it is simple to 

use; there is an explanation about what you see, and it is tuned to user knowledge and related to user aims. 
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4 CONCLUSIONS  

Occupant-related data and occupants’ behaviour models to facilitate building management and control  

The literature study showed that many occupancy models have been developed to integrate different types of 

occupant-related data into building control and performance models. However, the investigation with 

companies shows that these models are not yet currently used in practice. 

The interviewed companies currently gather some occupant-related data, but the use of the data is still limited 

to satisfaction with the indoor conditions or complaints about it. However, some partners are working towards 

gathering better user experiences in the buildings, for example the Mood Box in development by Strukton, and 

the plans from O-Nexus to understand occupants’ satisfaction and mood through the analysis of existing 

building data. 

The interviewed partners perform fault detection and diagnosis based on rules (rule-based) of indicators such 

as sensor ranges and trends. Furthermore, energy prediction and optimization are performed using black box 

models using the available building sensors. Here, some partners opt for a minimal sensor approach to reduce 

costs, whereas other partners prefer placing extra sensors to achieve better data for their models.  

The partner’s user-interfaces provide feedback to the occupant on a high-level (narrow casting) or not at all. 

In contrast, feedback to the professional end-user is typically not used yet. Regarding the occupants, there 

exists a general interest in user models. Specifically, partners are interested in exploring the relationship with 

perceived comfort to determine comfort-ranges to use for energy flexibility and comfort optimalization. 

Feedback interfaces for building occupants 

For the state of the art, scientific articles related to the use of feedback interfaces were sought. The 

investigation showed that although interfaces for building occupants are considered promising to decrease 

energy use through understandable information for users, there are still many limitations to their use, mostly 

related to their validity, replicability, and acceptance.  

On the other hand, the interfaces (dashboards and platforms) developed by the B4B partners involved in this 

study mostly focus on providing information to the facility managers and the building owner. Thus, they focus 

on energy and indoor environmental quality (IEQ) control and building performance. Partners seem interested 

in collecting more self-reporting data from occupants, for which the development of interfaces to collect such 

data are in development. However, none of these partners aim to focus on interfaces to provide information 

to the occupants of the buildings.  

The results from the Clima workshop with academics and practitioners identified similar requirements for the 

occupants’ interfaces as those found in the literature, such as the need for more understandable, accessible, 

and easier-to-read interfaces for the layperson. 

Interfaces for facility managers 

The state of the art study on interfaces for facility managers focused mainly on using BIM and other emergent 

smart technologies, their opportunities and challenges. These technologies are seen as having great potential 

in increasing the effectiveness of FMs work and improving building performance. The main shortcomings of 

these technologies to support FMs are the lack of data integration and accessibility to data, lack of clear and 

understandable information, and lack of awareness and skills in the industry to use these technologies. These 

challenges were in line with the requirements identified during the workshop at the Clima conference. Further 

research will be aimed at working with FMs to determine these requirements.  
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APPENDIX 2 – IN-DEPTH INTERVIEWS 
Summary of the results of the in-depth interviews with the industry partners 
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